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ABSTRACT

Current vision-language generative models rely on expansive corpora of paired
image-text data to attain optimal performance and generalization capabilities.
However, automatically collecting such data (e.g. via large-scale web scraping)
leads to low quality and poor image-text correlation, while human annotation is
more accurate but requires significant manual effort and expense. We introduce
ITIT (InTegrating Image Text): an innovative training paradigm grounded in the
concept of cycle consistency which allows vision-language training on unpaired
image and text data. ITIT is comprised of a joint image-text encoder with disjoint
image and text decoders that enable bidirectional image-to-text and text-to-image
generation in a single framework. During training, ITIT leverages a small set of
paired image-text data to ensure its output matches the input reasonably well in
both directions. Simultaneously, the model is also trained on much larger datasets
containing only images or texts. This is achieved by enforcing cycle consistency
between the original unpaired samples and the cycle-generated counterparts. For
instance, it generates a caption for a given input image and then uses the caption
to create an output image, and enforces similarity between the input and output
images. Our experiments show that ITIT with unpaired datasets exhibits similar
scaling behavior as using high-quality paired data. We demonstrate image gen-
eration and captioning performance on par with state-of-the-art text-to-image and
image-to-text models with orders of magnitude fewer (only 3M) paired image-text
data.

1 INTRODUCTION

Image-text multimodal training has gained remarkable attention in recent years. Models for text-
to-image generation show the impressive ability to synthesize realistic images from textual prompts
(Rombach et al., 2022; Chang et al., 2023; Saharia et al., 2022; Yu et al., 2022b; Ramesh et al., 2021).
Similarly, image-to-text models have demonstrated advanced image comprehension capabilities by
providing precise descriptions of input images (Chen et al., 2023; Wang et al., 2022a; Li et al., 2022;
2023a; Alayrac et al., 2022; Wang et al., 2022b). Training these models to exceptional performance
demands datasets comprising hundreds of millions to billions of paired image-text samples (Schuh-
mann et al., 2022). The collection of very large paired datasets comes at a considerable cost as well
as concerns of low quality (Jia et al., 2021). On the other hand, diverse and vast unimodal images or
texts datasets remain unused in current generative vision-language training (Raffel et al., 2020; Sun
et al., 2017; Zhai et al., 2022). This raises a natural question: can we leverage unpaired image and
text data to facilitate generative vision-language training?

The major problem with using unpaired data during vision-language training is the lack of super-
vision. To overcome this problem, we introduce ITIT, a novel training paradigm that uses cycle
consistency losses between cycle-generated images/texts and their corresponding original inputs to
provide supervision for image-only and text-only data (Figure 1). ITIT utilizes a small set of paired
image-text data to achieve reasonable text-to-image and image-to-text generation performance. Si-
multaneously, for unpaired image (text) data, ITIT generates corresponding text (image) counter-
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Figure 1: Overview of ITIT. For unpaired data, ITIT first generates the image/text counterpart, and
then uses these generated counterparts to reconstruct the original text or image.

parts and employs them as inputs to reconstruct the input image (text): this corresponds to a full
cycle loss. We consider two kinds of full cycles: T2I2T (starting with an unpaired text sample); and
I2T2I (starting with an unpaired image sample). These two types of cycles enable us to leverage
both unpaired image and text data to provide informative supervision signals for training.

To enable cycle training, we first unify image-to-text (I2T) and text-to-image (T2I) generation in
the same framework, with a bi-directional image-text encoder and disjoint image and text decoders.
We tokenize images into discrete visual tokens (Van Den Oord et al., 2017) and combine them with
text embeddings from a pre-trained T5 model (Raffel et al., 2020) as input to the joint image-text
encoder. For I2T generation, we employ an autoregressive text decoder (Wang et al., 2022a), while
for T2I generation we use a non-autoregressive parallel image decoder (Chang et al., 2023), which
is an order of magnitude faster than autoregressive image decoders such as Yu et al. (2022b).

A technical challenge of ITIT is that, state-of-the-art text-to-image and image-to-text generation
processes typically involve multiple forward steps of the model (Esser et al., 2021; Chang et al.,
2023; Rombach et al., 2022; Wang et al., 2022a). Back-propagating gradient through all these for-
ward steps brings significant memory and computation overheads. To solve this problem, for T2I2T
cycle, we first generate the image with parallel decoding. We then back-propagate the gradient
through one step of the parallel decoding process. For I2T2I cycle, we first generate the text auto-
regressively with multiple steps. Then we forward the text decoder once with the generated text
as input, and back-propagate the gradient only to this forward step. This significantly reduces the
computational overhead of the cycle training, making it feasible to apply in large model settings.

We evaluate the performance of ITIT on standard image-to-text and text-to-image generation bench-
marks and demonstrate that, by leveraging unpaired data and cycle consistency, ITIT attains per-
formance levels similar to a non-cycle baseline. However, ITIT uses up to 2 orders of magnitude
lower paired data. Furthermore, ITIT scales similarly with unpaired data as the baseline does with
equivalent amounts of paired data, while being much more robust to low data quality. We also
compare ITIT with state-of-the-art methods and show that we can achieve comparable performance
on common text-to-image and image-to-text benchmarks with substantially lesser paired data. Our
contributions are summarized as follows:

• We introduce a framework that unifies text-to-image and image-to-text generation, and pro-
pose ITIT, a novel technique that enforces consistency between cycle-generated images/text
and their corresponding originals. This approach allows the training of image-to-text and
text-to-image models using unpaired image and text data.

• We comprehensively evaluate the proposed ITIT framework and the image-text cycle con-
sistency method, and demonstrate that they significantly enhance model performance.
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• We show that ITIT can achieve performance on par with state-of-the-art methods on com-
mon text-to-image and image-to-text benchmarks with much lesser (∼100x) paired data.
When scaling up training data to improve model efficacy, we show that we can add only un-
paired examples using our framework and achieve similar performance as scaled-up paired
data, without the downsides of significant manual effort and poor pairing quality.

2 LITERATURE REVIEW

Image-to-Text Generation. Various works explore autonomously generating textual descriptions
from input images, either training the network with generative loss alone (Wang et al., 2022b;
Alayrac et al., 2022; Chen et al., 2023; Li et al., 2022; 2023a), or combining it with contrastive
learning (Yu et al., 2022a). GIT (Wang et al., 2022a) trains a model comprising an image encoder
and an auto-regressive text decoder using a language modeling loss, the image encoder pre-trained
with contrastive loss (Radford et al., 2021). In our work, we adopt a similar framework to GIT for
our Image-to-Text (I2T) framework, but we initialize our image encoder from scratch.

Text-to-Image Generation. Recent works focus on two primary paradigms: diffusion-based mod-
els (Rombach et al. (2022); Dhariwal & Nichol (2021); Nichol et al. (2021); Saharia et al. (2022);
Ramesh et al. (2022); Ruiz et al. (2023)); and token-based methods. Token-based strategies trans-
form raw images into image tokens, and predict these tokens either in an autoregressive manner
(Esser et al., 2021; Ramesh et al., 2021; Gafni et al., 2022; Yu et al., 2021; Ding et al., 2021; Yu
et al., 2022b) or in parallel (Chang et al., 2022; Li et al., 2023b; Chang et al., 2023). Muse (Chang
et al., 2023) demonstrates that token-based strategies with parallel decoding can be considerably
faster than diffusion-based or autoregressive generative models. Since this speed advantage facili-
tates text-to-image synthesis during training, we adopt this strategy in our T2I framework.

Unifying Image and Text Generation. COBIT (You et al. (2023)) achieves this by employing
distinct image and text unicoders, coupled with a unified cross-modal decoder. Additionally, CM3
(Aghajanyan et al. (2022)) and CM3Leon (Yu et al. (2023)) harness causally masked generative
models trained on extensive multi-modal document datasets, and enable the synthesis of both text
and images. However, all these works still heavily rely on large-scale paired image-text datasets.

Leveraging Unpaired Data in Generative Vision-Language Training. Early works have tried to
use unpaired image and text to train image captioning model in an unsupervised way (Feng et al.,
2019). However, the performance is relatively poor. Recent efforts in incorporating unpaired data
into generative vision-language training primarily focus on pre-trained image and text encoders
(Esser et al., 2021; Roberts et al., 2019). However, these applications are limited to pre-training
and do not encompass the entire generative vision-language training procedure, thus providing only
incremental improvements. In some cases, researchers have explored the use of text-only data to
improve text decoders (Wang et al. (2022b)), utilizing text-to-text training. However, this only
enhances the text decoder and not the image encoder, resulting again in constrained improvements.

Cycle-consistency. The concept of cycle consistency has previously been used to provide regu-
larization and/or compensate for a lack of annotated data. Zach et al. (2010); Zhou et al. (2016);
Godard et al. (2016); Zhu et al. (2017); Messikommer et al. (2022) explore it for computer vision
applications such as learning dense correspondence, event detection, depth estimation, and image-
to-image translation. Most related to our work is Gorti & Ma (2018), which uses text-image-text
cycle consistency to perform text-to-image translation, but the performance is poor. Moreover, none
of the previous works has explored the potential of cycle consistency in generative vision-language
training using unpaired data.

Our novel approach diverges from preceding vision-language models that heavily rely on either a
large corpus of paired image-text data, or fine-tuning methods that target only text or image en-
coder/decoders separately. For the first time, our method facilitates the utilization of unpaired image
and text data during generative vision-language training. This innovation significantly reduces the
dependency on paired image-text samples during the training process, which empowers the expan-
sion of generative vision-language training to nearly boundless text-only and image-only datasets.
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3 METHOD

ITIT is the first framework that enables generative vision-language training on unpaired image-only
and text-only data. It uses a simple yet effective architecture: a unified image-text encoder and two
separate image and text decoders. This design seamlessly enables text-to-image and image-to-text
generation in the same framework, which paves the way for text-image-text (T2I2T) and image-text-
image (I2T2I) cyclic losses. Below, we describe each component of our ITIT architecture and the
cycle-consistency training paradigm in detail.

3.1 UNIFIED IMAGE-TEXT GENERATION FRAMEWORK

Architecture. We first obtain text embedding T = [tl]
L
l=1 from the output of a T5 encoder (Roberts

et al., 2019) on the raw text. Similarly, raw images are passed through a pre-trained VQ-tokenizer
(Esser et al., 2021) to output image tokens I = [ik]

K
k=1. L and K are the token sequence lengths

for text and image, respectively. The image tokens I are then embedded with an embedding layer
and concatenated with the T5 text features T as input to the image-text encoder. Modality-specific
decoders then operate on the encoded image-text features to generate either text or image tokens.
The text decoder is autoregressive (Wang et al., 2022a), while the image decoder is parallel (Chang
et al., 2023). Both encoder and decoders are based on Transformer (Vaswani et al., 2017) layers. A
detailed description of the model architecture is included in Appendix B.

Image-to-Text (I2T) Training. As shown in Figure 2, we input masked image tokens along with
empty text embedding to the image-text encoder. Masking is used to save computation, similar to
MAE (He et al., 2022). We then use the features generated by the image-text encoder, as well as the
ground-truth text tokens prepended with [BOS] (begin-of-sentence) token as the input to our text
decoder. We use an auto-regressive language modeling (LM) loss to train the encoder and decoder:

LI2T = −E(I,T )∈D
[ L∑
l=1

log p(tl|IM , t0, · · · , tl−1)
]
, (1)

which is a CE loss with label smoothing 0.1. Here, t0 is set to be the [BOS] token. IM are
the (subset of) unmasked tokens in I and p(ik|IM , T ) is the probability predicted by the encoder-
decoder network (the ‘logits’ layer), D is the distribution of paired image-text data. Note that the
text decoder employs causal attention similar to GIT (Wang et al. (2022a)): each text token only
depends on the preceding text tokens and all image features.

Text-to-Image (T2I) Training. As shown in Figure 2, right panel, we use masked image modeling
for image generation, where the training objective is to reconstruct masked image tokens conditioned
on the unmasked image tokens and the paired text features. We denote the binary mask determining
which image tokens are masked by M = [mk]

K
k=1. We use a cross-entropy loss between the ground-

truth one-hot image tokens and the output of the image decoder. Specifically,

LT2I = −E(I,T )∈D
[ ∑
∀k:mk=1

log p(ik|IM , T )
]
, (2)

Inference. We follow GIT (Wang et al., 2022a) for image-to-text inference and Muse (Chang et al.,
2023) for text-to-image inference. More details are included in Appendix B.

3.2 TRAINING WITH CYCLE CONSISTENCY

Our cycle consistency training paradigm allows training with image-only and text-only data. The
key idea is to first synthesize the corresponding text/image from the image-only or text-only data,
and then use the synthesized data as input to reconstruct the original image/text. This allows us to
apply cycle consistency supervision on image-only and text-only data.

Text-Image-Text (T2I2T) Cycle. Our T2I2T training pipeline is shown in Figure 3, top panel. At
each training iteration, we first synthesize pseudo paired image tokens I ′ for input text T = [tl]

L
l=1

using our T2I inference pipeline. We then apply random mask M to I ′, perform reconstruction
on I ′M with the text T using the T2I pipeline, and obtain the reconstructed synthesized image Ĩ .
This two-step process allows us to avoid the excessive memory requirements of back-propagating
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prepended with [BOS] token are used for auto-regressive language modeling loss.

gradients through all 24 steps of parallel decoding, while still training the T2I module. Finally, we
randomly mask Ĩ and use ĨM to generate text using the I2T pipeline. The objective of our cycle
paradigm is to enforce consistency between this generated text and the original text. Therefore, the
T2I2T cycle-consistency loss can be formulated as follows:

LT2I2T = −ET∈Dtext

[ L∑
l=1

log p(tl|ĨM , t0, · · · , tl−1)
]
, (3)

This is very similar to the I2T loss in Equation (1), except that Ĩ is synthesized from T instead of
being drawn from the image-text joint distribution.

Image-Text-Image (I2T2I) Consistency. Our I2T2I training pipeline is shown in Figure 3, bottom
panel. Similar to the T2I2T pipeline, we first synthesize pseudo paired text tokens T ′ for input image
tokens I using our I2T inference pipeline. We then use the I2T training pipeline to predict t̃l from
t′0, · · · , t′l−1 and IM . As before, this avoids the excessive memory requirements of back-propagating
gradients through the auto-regressive greedy decoding. We then mask I , and pass it through the T2I
pipeline with the predicted T̃ to reconstruct the masked image tokens. Again, the loss enforces
consistency between the reconstructed and the original image tokens using cross-entropy:

LI2T2I = −EI∈Dimage

[ ∑
∀k:mk=1

log p(ik|IM , T̃ )
]
, (4)

Gradient Estimation. One challenge in our cycle training is that ĩk = argmax(p(ik|I ′M , T ) and
t̃l = argmax p(tl|IM , t′0, · · · , t′l−1), which are not differentiable. To solve this, we use a straight-
through estimation on the predicted logits to approximate the gradient. Specifically, we directly copy
the gradient on the one-hot prediction to the predicted logits after softmax. We show in section 4.4
that this helps improve both text-to-image and image-to-text performance.
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Figure 4: How ITIT-H’s performance scales with additional paired Shutterstock data. The baseline
(T2I+I2T) is trained with paired samples only. ITIT is trained with the same number of paired
samples, as well as 398M unpaired samples (the full Shutterstock dataset) using cycle loss.

4 RESULTS

4.1 EXPERIMENT SETUP

Datasets. We use three datasets in our experiments: CC3M (Sharma et al., 2018), WebLI (Chen
et al., 2023), and Shutterstock (Shutterstock, 2023). CC3M contains 3.3 million high-quality image-
text pairs. WebLI (Web Language Image) contains 111 million images where the image-text pairing
quality is much lower than CC3M. Thus, WebLI is significantly noisier and, as we show, leads to
worse performance for I2T. Shutterstock contains 398 million images labeled by human annotators,
which incurs significant expense and effort. More dataset details are included in Appendix C.

We use CC3M as our paired dataset, 50% of WebLI images as our unpaired image dataset, and the
other 50% of WebLI texts as our unpaired text dataset for most of our experiments (Section 4.3 and
Section 4.4). This 50%-50% split ensures that corresponding image-text pairs are not present in our
unpaired image and text splits. We use the Shutterstock dataset in Section 4.2, where we analyze
how ITIT scales w.r.t. different number of paired and unpaired data samples.

Training. We set the input image resolution as 256x256 to be consistent with previous literature. Af-
ter passing through the VQGAN tokenizer, the image token sequence length is 16x16 (256 tokens).
The raw text (maximum length of 64) is tokenized by SentencePiece tokenization (SentencePiece,
2023), and embedded using a pre-trained T5 encoder. These embeddings are then concatenated with
the image token embeddings as the input to our image-text encoder.

We experiment with ViT-B, ViT-L, and ViT-H size Transformers (Dosovitskiy et al. (2021)) for
our image-text encoder. We combine the losses in Equations 1 through 4 with equal weight for
training. For results in Section 4.3, we use Adafactor (Shazeer & Stern, 2018) to train the model for
1.5M steps with a batch size of 2048 (1024 for image-text pairs, 512 for unpaired images, and 512
for unpaired texts). We use a cosine learning rate schedule with 5K steps warmup and maximum
learning rate 1× 10−4. For other experiments, we use the exact same training paradigm except that
we train the models for 500K steps. More details are included in Appendix B.

Evaluation. We follow the commonly used MS-COCO benchmark and evaluation protocols. For
image-captioning, we evaluate both the zero-shot and fine-tuning performance of ITIT on the COCO
Karpathy split (Karpathy & Fei-Fei, 2015) and report the CIDEr score (Vedantam et al., 2015). For
text-to-image generation, we evaluate ITIT on 30K image-text pairs randomly selected from the
COCO Captions training set and report the Frechet Inception Distance (FID) score (Heusel et al.,
2017). CIDEr is the higher the better, and FID is the lower the better.

4.2 SCALE WITH DATA

In this section, we comprehensively evaluate ITIT’s performance with different amounts of paired
and unpaired data on Shutterstock dataset (Shutterstock, 2023) consisting of 398M image-text pairs.
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Figure 5: How ITIT’s performance scales with the total amount of data used (x-axis). The base-
line (T2I + I2T) in blue is trained entirely with increasing amounts of paired data. ITIT (orange)
is trained with an increasing amount of unpaired data using cycle loss, while keeping the total
amount of data equal for both curves. For example, the rightmost point with Shutterstock uses 1.2M
image-text pairs and 396.8M unpaired samples (half as unpaired image and half as unpaired text)
for ITIT with cycle loss, and 398M image-text pairs for the baseline. Left: Shutterstock data as both
paired and unpaired. Right: CC3M as paired data, and varying fractions of WebLI as additional
paired / unpaired data.

Figure 4 analyses how ITIT’s performance scales with paired data. We train a baseline with only
paired data, with the sum of the losses in Equation (1) and Equation (2). ITIT is trained with the
same paired data as the baseline, and the entire set of 398M images and text present in Shutterstock
as unpaired data. More paired data helps both settings, but training with unpaired data significantly
improves ITIT’s performance over the baseline on both image captioning and text-to-image gen-
eration. Remarkably, with only 4M paired data and 398M unpaired data, ITIT achieves a similar
performance as training with 398M paired data. Note that ITIT does not use any samples not present
in the baseline trained with 398M paired data, as all of the samples are from Shutterstock. Therefore
ITIT can perform similarly as a baseline with 100x fewer image-text pairs, significantly reducing
the effort and expense for the training of generative vision-language training.

Next, we evaluate how ITIT’s performance scales w.r.t. the total amount of data used. We first
train a model with 1.2M paired image-text Shutterstock data. We then evaluate the effect of training
models on adding increasing amounts of additional paired data vs. adding increasing amounts of
unpaired data with cycle loss, keeping the total amount of data the same for both. As expected,
we see in Figure 5 that performance scales up with additional paired data. Surprisingly, however,
additional unpaired data exhibits similar scalability as paired. In fact, we can achieve 19.2 FID and
21.0 CIDEr with only 1.2M paired and 396.8M unpaired examples, which is very competitive with
19.0 FID and 22.2 CIDEr using 398M paired examples only. This experiment thus demonstrates
that when scaling up training data, practitioners can rely on only adding unpaired examples using
our method and achieve similar performance as paired data without the extra manual effort required
to collect it.

We repeat the above experiment in a more realistic setting, where the small-scale paired dataset
can contain high-quality image-text pairs but a large-scale paired dataset has much lower quality.
For this, we use the high-quality CC3M as the paired dataset, and the much larger WebLI as the
low-quality unpaired dataset. As before, we start with a model trained on 3M paired examples
(from CC3M), and add additional training data from WebLI in paired (blue) or unpaired (orange)
form. As shown in Figure 5, right pair, adding low-quality image-text pairs harms image captioning
performance severely for the fully-paired case. However, the ITIT regime is not affected by this low
quality and scales similarly as before. This demonstrates that our method is robust to low data quality
in large datasets, and can in fact be used to achieve significantly better performance in settings when
paired data is present but of low quality.

4.3 COMPARISON TO PRIOR WORK

In Table 1, we compare ITIT with state-of-the-art image-to-text and text-to-image models on the
commonly used MS-COCO benchmark. As shown, all SOTA methods rely heavily on training on
a large corpus of paired image-text data. ITIT, however, is trained with only 3M paired examples
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Table 1: Quantitative comparison with state-of-the-art text-to-image and image-to-text models on
MS-COCO. The image-captioning performance is evaluated on the COCO Karpathy split, and the
text-to-image generation FID is evaluated on 30K COCO images. † denotes our re-implementation.
We highlight in green other models that use comparable amounts of paired data. Note that the GIT
(CLIP) model uses a CLIP (Radford et al., 2021) encoder pre-trained with 400M image-text pairs.

Methods #params #paired data #unpaired data FID↓ CIDEr↑ (zs) CIDEr↑ (ft)

T2I
StableDiffusion (Rombach et al., 2022) 800M 400M - 12.60 - -
GLIDE (Nichol et al., 2021) 5B 250M - 12.24 - -
Make-A-Scene (Gafni et al., 2022) 4B 35M - 11.84 - -
DALL-E 2 (Ramesh et al., 2022) 3.5B 650M - 10.39 - -
PARTI (Yu et al., 2022b) 750M 5000M - 10.71 - -
Muse-512 (Chang et al., 2023) 3B 860M - 7.88 - -
Muse† (Chang et al., 2023) 750M 3M - 23.7 - -

I2T
BLIP (Li et al., 2022) 446M 129M - - - 136.7
SimVLMbase (Wang et al., 2022b) - 1100M 365M T - 24.0 134.8
SimVLMhuge (Wang et al., 2022b) ∼1.4B 1100M 365M T - 32.2 143.3
GIT (CLIP) (Wang et al., 2022a) 681M 800M - - - 144.8
GITB (scratch) (Wang et al., 2022a) 129M 10M - - - 89.0

T2I+I2T
CoBIT-Base (You et al., 2023) 626M 5200M - 10.35 43.0 135.4
CoBIT-Large (You et al., 2023) 1091M 5200M - 9.37 44.8 139.5
CM3Leon (Yu et al., 2023) 7B 340M - 4.88 61.6 -
ITIT-B 221M 3M 55M I+55M T 13.4 32.1 103.5
ITIT-L 487M 3M 55M I+55M T 12.0 35.1 116.4
ITIT-H 868M 3M 55M I+55M T 10.4 38.2 125.3

(CC3M), and an additional 55M unpaired image and text examples each (WebLI). Despite this, it
beats many other methods trained on much more data for text-to-image generation (FID). For I2T, it
beats methods using a comparable amount of data (highlighted in green), and achieves performance
competitive with other SOTA methods. We find that the pre-training data (both the mixture and
the size) also makes a difference to CIDEr score. For example, GIT (Wang et al., 2022a) achieves
only 89.0 CIDEr fine-tuning performance on COCO captions when trained from scratch with 10M
image-text pairs, which is far from its reported performance (144.8) when trained with 800M image-
text pairs. Our approach is orthogonal to dataset mixture considerations, and we believe that scaling
data size and variety will further enhance FID and CIDEr scores. We leave this to future work.

4.4 ABLATIONS

In Table 2, we ablate the effectiveness of the four components of ITIT: T2I, I2T, T2I2T, and I2T2I.
As shown in rows 1-3, combining T2I and I2T training in our framework already improves image
captioning performance. This is likely because the T2I training alleviates the overfitting problem of
I2T training, as shown in GIT (Wang et al., 2022a).

As before (Figure 5), we can see in row 4 that combining CC3M and WebLI improves text-to-image
generation, but harms image captioning performance. This is because of the lower image-text pairing
quality of WebLI compared to CC3M. The remaining rows demonstrate that the cycle loss alleviates
this by using WebLI as unpaired data and does not depend on its image-text pairing quality. It is
thus more generalizable to large-scale image-text datasets.

Next, rows 5-7 are naive baselines for using unpaired image or text data during generative vision-
language training. We can simply perform text-to-text (T2T) autoregressive training without condi-
tioning on images, which has been explored in some prior works (Wang et al. (2022b)). Similarly,
we can perform image-to-image (I2I) reconstructive training without conditioning on text. Such
baselines do improve the performance over not using any paired data (row 3).

We consider an ablation where the gradient of the cycle consistency loss is backpropagated up
until the argmax step. Hence, only half of the cycle is trained. In fact, this is equivalent to first
synthesizing an image counterpart from unpaired text and then using it as a pseudo image-text pair
to train the I2T model (similarly for T2I). Rows 8-10 show that the half-cycle loss achieves much
better performance than non-cycle baselines.
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Table 2: Quantitative comparison between different variants of ITIT on MS-COCO. All experiments
use ITITB trained with 500K steps. We take 50% of WebLI data and use the images as our unpaired
image data, and the other 50% of WebLI data and use the texts as our unpaired text data.

T2I I2T T2I2T I2T2I paired data unpaired text unpaired image FID↓ CIDEr↑
Paired data only
1 ! % % % CC3M % % 15.5 N/A
2 % ! % % CC3M % % N/A 19.0
3 ! ! % % CC3M % % 15.7 23.5
4 ! ! % % CC3M+WebLI % % 14.2 20.7

Paired+unpaired data, no cycle
5 ! ! T2T % CC3M 50% WebLI % 15.1 26.0
6 ! ! % I2I CC3M % 50% WebLI 15.9 24.2
7 ! ! T2T I2I CC3M 50% WebLI 50% WebLI 15.6 28.5

Paired+unpaired data, half cycle
8 ! ! Half % CC3M 50% WebLI % 14.8 27.6
9 ! ! % Half CC3M % 50% WebLI 14.7 24.8

10 ! ! Half Half CC3M 50% WebLI 50% WebLI 14.5 30.5

Paired+unpaired data, full cycle
11 ! ! Full % CC3M 50% WebLI % 14.6 28.4
12 ! ! % Full CC3M % 50% WebLI 14.6 26.3
13 ! ! Full Full CC3M CC3M CC3M 15.4 24.4
14 ! ! Full Full CC3M 50% WebLI 50% WebLI 14.3 31.1

Figure 6: Iteratively generating text to image to text and so on. With ITIT, the generated results are
more consistent than the results from a model trained without the cycle consistency loss.

Finally, rows 11-14 show the performance of the full cycle ITIT training. Although T2I2T favors
image captioning while I2T2I favors text-to-image generation, they both show significant improve-
ment in text-to-image generation and image captioning. Moreover, row 14 demonstrates that such
two cycle losses can be combined to further improve performance. Additionally, we can see that
the full cycle loss beats the half-cycle baselines (row 8-10), demonstrating the effectiveness of the
gradient estimation step.

Lastly, we find by comparing row 3 and 13 that the cycle consistency loss can slightly improve the
performance even without any additional data. We believe this is because it forces better image-
text alignment. However, comparing row 13 and 14 shows that the huge improvements in both
text-to-image and image-to-text generation mainly stem from the usage of additional unpaired data.

4.5 CYCLE-GENERATION RESULTS

With a framework that can perform both image-to-text and text-to-image, we can easily perform
cycle-generation, as shown in Figure 6. With ITIT training, the cycle generation often keeps the
same semantics as the input text prompt. On the other hand, without the cycle consistency training,
the cycle generation misses the “blue” semantics after the first cycle. This demonstrates that our
cycle consistency training not only enables integrating unpaired image and text data into generative
vision-language training, but also improves image-text alignment for both image-to-text and text-
to-image generation. We include a number of results of image and text generation in Appendix A
(Figures 1 through 4).
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5 DISCUSSION

We propose ITIT, a novel training scheme that for the first time incorporates unpaired images and
text into generative vision-language training. Through extensive ablations, we demonstrate the ef-
fectiveness of both the T2I2T cycle and I2T2I cycle in improving text-to-image and image-to-text
generation performance. As a result, ITIT achieves performance competitive with state-of-the-art
vision-language generative models, but with only 3 million paired image-text samples. Our method
can be used even when paired image-text data is present, and is especially helpful when the pairing
quality is low. Future directions include scaling ITIT to larger unpaired image and text data and
model sizes, and utilizing more diverse datasets.
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A ADDITIONAL QUALITATIVE RESULTS

Image-to-Text and Text-to-Image Generation. In Figure 7, Figure 8 and Figure 9, we show the
performance of ITIT on text-to-image generation and image captioning. The model uses ViT-H as
the backbone and is trained with CC3M as paired data and WebLI as unpaired data for 1.5M steps.
As shown in the results, our model can generate realistic images from text prompts, and can also
generate accurate captions for the input image.

Cycle Generation. We include more cycle-generation results in Figure 10. With ITIT, the gen-
erated results are quite consistent with the original input. Without the cycle consistency loss, the
generated text/image can easily miss some key information in the input image/text, causing the
cycle-generation results to diverge from the original input. This demonstrates that the proposed cy-
cle consistency loss forces the cycle generation to be more consistent and improve the input-output
alignment for both text-to-image and image-to-text generation.

B IMPLEMENTATION DETAILS

In this section, we include our implementation details, including hyper-parameters, model architec-
ture, and training paradigm. We will also release our code for better reproducibility.

Image Tokenizer and Detokenizer. We use a CNN-based VQGAN encoder to encode the 256x256
input images to 16x16 feature maps. The quantizer then quantizes each pixel of the encoder’s output
feature map using a codebook with 8192 entries. The detokenizer operates on the 16x16 discrete
tokens and reconstructs the 256x256 image. Our VQGAN tokenizer and detokenizer are trained on
the WebLI dataset with batch size 256.

ViT architecture. After the tokenizer, the image latent sequence length becomes 256. Since we
always use a masking ratio larger than 50%, we drop 128 of the masked image tokens from the input.
The tokens are then embedded with an embedding layer and concatenated with the text embedding
from T5-XXL with a length of 64. We then use an image-text encoder Transformer with standard
ViT architecture Dosovitskiy et al. (2021), which consists of a stack of Transformer blocks Vaswani
et al. (2017), where each block consists of a multi-head self-attention block and an MLP block.

The text decoder is similar to the one used in GIT (Wang et al., 2022a), which consists of 6 Trans-
former blocks with causal attention mask. The attention mask ensures each text token can only
attend to its previous text tokens and the image tokens.

The image decoder is similar to the one used in MAGE (Li et al., 2023b), which consists of 8
Transformer blocks with self-attention. The input to the image decoder is padded with the previously
dropped masked image tokens. In this way, we save a lot of computation in the image-text encoder.

Vision-language Training. Please refer to Table 3 for our default vision-language training setting.
With the online synthesis step, ITIT requires ∼2x training time as standard I2T and T2I non-cycle
training. Our ViT-H training with 1.5M steps takes ∼10.9 days on 512 TPUv3.

Gradient scale for I2T loss: Similar to GIT (Wang et al. (2022a)), we found that the image-text
encoder should receive a smaller gradient than the text decoder. Therefore, we scale down the
gradient backpropagated from the text decoder to the image-text encoder by 0.1. In practice, this is
simply implemented by z = 0.1z + stopgrad(0.9z) where z denotes the output of the image-text
encoder.

Cycle Training. During cycle training, the image-text encoder experiences the forward pass twice.
We found that if we back-propagated the gradient back to it twice, the training becomes unstable.
Therefore, we stop the gradient after the first forward pass of the image-text encoder, which signifi-
cantly stabilize the cycle training.

Gradient Estimation. We use Gumbel softmax (Jang et al., 2016) with strength 1.0 for the gradient
estimation in the T2I2T cycle, and use straight-through softmax for the gradient estimation in the
I2T2I cycle. We found that using Gumbel softmax in the T2I2T cycle improves zero-shot CIDEr by
0.3, while using Gumbel softmax in the I2T2I cycle does not bring improvement.

I2T Inference. To generate captions for an image, we first extract visual features from the image
tokens (and empty text tokens) using the image-text encoder. Then we auto-regressively generate the
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Table 3: Pre-training Setting.
config value

optimizer Adafactor (Shazeer & Stern, 2018)
peak learning rate 1e-4
weight decay 0.045
optimizer momentum β1, β2 = 0.9, 0.96
T2I batch size 512
I2T/I2I batch size 512
T2I2T batch size 512
I2T2I batch size 512
learning rate schedule cosine decay (Loshchilov & Hutter, 2016)
warmup steps 5000
training steps 1.5M
gradient clip 3.0
label smoothing (Szegedy et al., 2016) 0.1
dropout 0.1
image masking ratio min 0.5
image masking ratio max 1.0 (T2I), 0.75 (I2T)
image masking ratio mode 0.75
image masking ratio std 0.25

tokens, conditioned on the visual features and previously generated tokens. Following GIT (Wang
et al. (2022a)), we use beam search to generate the tokens with a beam size set to 4.

T2I Inference. To enable classifier-free guidance (Ho & Salimans, 2022) for generation, when
performing I2T training with empty text embedding as input, we also train the image decoder to
reconstruct missing tokens. In such cases, the T2I training becomes image-to-image (I2I) training,
which is to reconstruct the original tokens from unmasked tokens.

Similar to Muse (Chang et al. (2023)), we use parallel decoding with classifier-free guidance to
generate an image from a text prompt. We start with entirely masked image tokens, and concatenate
them with the text prompt tokens. At each iteration, the decoder predicts a conditional logit lc
and an unconditional logit lu for each masked token. The final logits lg are formed by moving
away from lu by the guidance scale τ : lg = (1 + τ)lc − τ lu. We then sample each token using
categorical sampling. After that, the corresponding prediction score of each token plus a noise
sampled from a random Gumbel distribution multiplied by temperature t is used as the ”confidence”
score indicating the model’s belief of each token prediction. We then sample the top-k tokens with
the highest predicted probability, and replace the corresponding masked tokens with these sampled
predicted tokens. The number of masked tokens to be replaced in each iteration follows a cosine
function (Chang et al., 2022). We use a total of 24 steps to generate an image. For each model, we
sweep temperature t and classifier-free guidance scale τ for the optimal FID. In practice, we find
t = 32 and τ = 2.0 serve as near-optimal temperature and guidance scale.

C DATASETS

We use three datasets in our main paper: CC3M, WebLI, and Shutterstock. CC3M contains 3.3M
image-text pairs. The raw descriptions are harvested from the alt-text HTML attribute associated
with web images and then filtered to form the final dataset. WebLI (Web Language Image) contains
111 million images from the public web with image-associated alt-text labels where the image-text
pairing quality is much lower than CC3M, because no filtering was applied to the alt-text data.
Shutterstock contains 398 million images labeled by human annotators, which incurs significant
expense and effort.
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Half of a white 
cake with 
cholocate on top

A full bathroom 
with a wicker 
laundry basket

A small white cat 
on a large bowl

A large 
passenger 
airplane flying 
through the air

A large red bus 
on the side of a 
city street

A motorcycle 
parked on grass 
pathway

A fall landscape 
with a house 
next to a lake

A plate of food 
with noodles, 
carrots and 
broccoli

Plants sitting 
near a window 
inside a house

Figure 7: ITIT text-to-image generation results.
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Baseline

ITIT

person and me on the 
beach

person with a surfboard 
on the beach

person preparing food 
in the kitchen

preparing food in the 
kitchen

a close up of a bull

a bull on the farm

tv in the living room

a tv stand in a room

Baseline

ITIT

a homeless man sleeps 
on a park bench

a man sitting on a 
bench

black and white 
photograph of the clock 
tower

black and white photo 
of the clock tower

a picture of a baby 
eating watermelon

cute baby with a 
birthday cake

a selection of food from 
the menu

a picture of the meal

Baseline

ITIT

desk in the living room

my desk at the office

a child sleeps on a bed

person sleeping on the 
bed

man selling bananas 
on the street

a vendor sells bananas 
at a market

bathroom : small 
bathroom ideas with 
shower stall

example of a trendy 
bathroom design

Baseline

ITIT

a plane in the sky

a plane in the sky

a pizza topped with 
mozzarella and cherry 
tomatoes

a photo of a pizza

a skateboarder does a 
trick on a skateboard

a young man 
skateboarding in a park

a woman dances in 
traditional dress

a girl in traditional 
costume

Figure 8: Image-to-text generation performance (zero-shot on COCO Captions). The baseline is
trained on CC3M only. ITIT is trained on CC3M as paired data and WebLI as unpaired data. We
obfuscate the faces of people in the images.
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a living room filled with 
furniture and a flat 
screen tv

a man in a baseball 
uniform holding a bat

a cat standing under an 
umbrella in the grass

a group of people flying 
kites on a cloudy day

a couple of zebra 
standing next to each 
other

a white cat sitting on 
top of a sink

a group of people 
walking down a 
sidewalk next to a body 
of water

a giraffe is standing in 
a zoo enclosure

a cell phone sitting on 
top of a newspaper

a woman in a blue 
dress is holding a 
tennis racket

a bathroom with a toilet 
a sink and a window

a fire hydrant on a city 
street at night

a man walking down a 
street holding a cell 
phone

a red motorcycle 
parked on the side of a 
road

a person riding a skate 
board on a rail

a display case filled 
with different types of 
vegetables

a group of teddy bears 
sitting on top of a table

a group of boats are 
docked in the water

a man riding a 
skateboard up the side 
of a ramp

a clock on a pole in 
front of a building

Figure 9: ITIT image-to-text generation results (fine-tuned on COCO Captions).
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ITIT

No 
Cycle
Loss

a pink bicycle 
leaning against a 

tree

pink bicycle 
leaning against a 

tree

a pink bicycle 
leaning against a 

tree

pink bike leaning 
against a tree

pink bicycle 
leaning against a 

tree

a pink bicycle 
leaning against a 

tree

pink bicycle 
leaning against a 

tree

pink bicycle 
leaning against a 

wall

pink bicycle vector illustration 
of a bicycle

ITIT

No 
Cycle
Loss

piece of 
chocolate cake 

on a yellow plate

slice of chocolate 
cake on a yellow 

plate

a slice of 
chocolate cake 

on a yellow plate

a slice of 
chocolate cake 

on a yellow plate

a slice of 
chocolate cake 

on a yellow plate

piece of 
chocolate cake 

on a yellow plate

piece of 
chocolate cake 

on a white 
background

chocolate cake 
isolated on a 

white 
background

chocolate cake 
isolated on a 

white 
background

cake on a white 
background

ITIT

No 
Cycle
Loss

a pizza and a 
cup of coffee on 

a table

pizza with a cup 
of coffee

pizza with a cup 
of coffee

coffee and a 
slice of pizza

coffee and a 
slice of pizza

a pizza and a 
cup of coffee on 

a table

pizza pizza from the 
top - spicy pizza

pizza from the 
top - spicy pizza

pieces of pizza 
on a white 

background

Figure 10: More cycle generation results with or without cycle consistency loss.
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