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Unconditional is Harder than Conditional

<latexit sha1_base64="2SIKUsQs/XuYy4PWP4eqW1fIWSI=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVO2x4MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpFa1dzksV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGWPoxFTlBg+swQTxeytiEywwsTYeEo2BG/15XXSuap5N7Xrh3ql2cjjKMIZnEMVPLiFJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MHGmONmw==</latexit>

P (X)

Hard



Unconditional is Harder than Conditional

<latexit sha1_base64="2SIKUsQs/XuYy4PWP4eqW1fIWSI=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVO2x4MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpFa1dzksV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGWPoxFTlBg+swQTxeytiEywwsTYeEo2BG/15XXSuap5N7Xrh3ql2cjjKMIZnEMVPLiFJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MHGmONmw==</latexit>

P (X)
<latexit sha1_base64="9qkAtrWXKICU+mkdf7jRFkBGk/M=">AAACMnicbVDLSgMxFM34rPVVdekmWISKUGbER5cFN7qrYB/QDiWTybShmQfJHbGM/SY3fongQheKuPUjTKcD1tYDgcM553JzjxMJrsA0X42FxaXlldXcWn59Y3Nru7Cz21BhLCmr01CEsuUQxQQPWB04CNaKJCO+I1jTGVyO/eYdk4qHwS0MI2b7pBdwj1MCWuoWrmul1kMH2D0kDpfu6KhD3RBwrTSt4WP8G9OTs6lU6haKZtlMgeeJlZEiylDrFp47bkhjnwVABVGqbZkR2AmRwKlgo3wnViwidEB6rK1pQHym7CQ9eYQPteJiL5T6BYBTdXoiIb5SQ9/RSZ9AX816Y/E/rx2DV7ETHkQxsIBOFnmxwBDicX/Y5ZJREENNCJVc/xXTPpGEgm45r0uwZk+eJ42TsnVePrs5LVYrWR05tI8OUAlZ6AJV0RWqoTqi6BG9oHf0YTwZb8an8TWJLhjZzB76A+P7B9Muqn4=</latexit>

P (X|bird) · P (bird) + P (X|cat) · P (cat)<latexit sha1_base64="IAdb6KsH283NdRrdQp5TWeMcScQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKj1yEgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/tFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVITVvwJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bsuX9UvS9VKFkceTuAUzsGDG6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwCNC4zB</latexit>=

Hard Easy Easy



Decompose Hard Distribution!

<latexit sha1_base64="2SIKUsQs/XuYy4PWP4eqW1fIWSI=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVO2x4MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpFa1dzksV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGWPoxFTlBg+swQTxeytiEywwsTYeEo2BG/15XXSuap5N7Xrh3ql2cjjKMIZnEMVPLiFJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MHGmONmw==</latexit>

P (X)

More Generally, for any function :
<latexit sha1_base64="iDSu7qCiNvBV3hy+DO0BNaa1IRw=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMQ9IljA76U2GzM4uM7NCCPkDLx4U8eofefNvnE32oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj28xvP6HSPJaPZpKgH9Gh5CFn1FjpISz1yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4U6oMZwJnpV6qMaFsTIfYtVTSCLU/nV86I2dWGZAwVrakIXP198SURlpPosB2RtSM9LKXif953dSENX/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJ66LqXVev7i8r9VoeRxFO4BTOwYMbqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+AP+hjP4=</latexit>

f
<latexit sha1_base64="IAdb6KsH283NdRrdQp5TWeMcScQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKj1yEgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/tFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVITVvwJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bsuX9UvS9VKFkceTuAUzsGDG6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwCNC4zB</latexit>=

<latexit sha1_base64="GpsN3XSZwkXtXd0Rh7TvsB+hnQE=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWAR0k1JxEeXBTcuI9g20IYymUzaoZNJmJkIpe3CX3HjQhG3/oY7/8ZpmoW2Hrhw5px7mXtPkDIqlW1/G6W19Y3NrfJ2ZWd3b//APDxqyyQTmLRwwhLhBUgSRjlpKaoY8VJBUBww0glGt3O/80iEpAl/UOOU+DEacBpRjJSW+uaJa3nTyPJqtR4OEwVdK3/0zapdt3PAVeIUpAoKuH3zqxcmOIsJV5ghKbuOnSp/goSimJFZpZdJkiI8QgPS1ZSjmEh/ku8/g+daCWGUCF1cwVz9PTFBsZTjONCdMVJDuezNxf+8bqaihj+hPM0U4XjxUZQxqBI4DwOGVBCs2FgThAXVu0I8RAJhpSOr6BCc5ZNXSfui7lzXr+4vq81GEUcZnIIzYAEH3IAmuAMuaAEMpuAZvII348l4Md6Nj0VryShmjsEfGJ8/mMqT4Q==</latexit>

P (X|f(X)) · P (f(X))



Decompose Hard Distribution!

<latexit sha1_base64="2SIKUsQs/XuYy4PWP4eqW1fIWSI=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVO2x4MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpFa1dzksV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGWPoxFTlBg+swQTxeytiEywwsTYeEo2BG/15XXSuap5N7Xrh3ql2cjjKMIZnEMVPLiFJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MHGmONmw==</latexit>

P (X)

More Generally, for any function :
<latexit sha1_base64="iDSu7qCiNvBV3hy+DO0BNaa1IRw=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMQ9IljA76U2GzM4uM7NCCPkDLx4U8eofefNvnE32oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj28xvP6HSPJaPZpKgH9Gh5CFn1FjpISz1yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4U6oMZwJnpV6qMaFsTIfYtVTSCLU/nV86I2dWGZAwVrakIXP198SURlpPosB2RtSM9LKXif953dSENX/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJ66LqXVev7i8r9VoeRxFO4BTOwYMbqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+AP+hjP4=</latexit>

f
<latexit sha1_base64="IAdb6KsH283NdRrdQp5TWeMcScQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKj1yEgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/tFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVITVvwJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bsuX9UvS9VKFkceTuAUzsGDG6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwCNC4zB</latexit>=

<latexit sha1_base64="UbmHlxebmm133e8ADa/0rck2nTk=">AAACIXicbVDJSgNBEO1xjXGLevTSGITkEmbEJceAF48RzAJJCD09NUmTnoXuGjGM+RUv/ooXD4rkJv6MneWgSR4UPN6r6up6biyFRtv+ttbWNza3tjM72d29/YPD3NFxXUeJ4lDjkYxU02UapAihhgIlNGMFLHAlNNzB7cRvPILSIgofcBhDJ2C9UPiCMzRSN1euFprPbYQnnL6VKvBGqV9oFkfFNvcipNXCareby9slewq6TJw5yZM5qt3cuO1FPAkgRC6Z1i3HjrGTMoWCSxhl24mGmPEB60HL0JAFoDvpdO+InhvFo36kTIVIp+rfiZQFWg8D13QGDPt60ZuIq7xWgn65k4owThBCPlvkJ5JiRCdxUU8o4CiHhjCuhPkr5X2mGEcTataE4CyevEzqFyXnunR1f5mvlOdxZMgpOSMF4pAbUiF3pEpqhJMX8kY+yKf1ar1bX9Z41rpmzWdOyD9YP78TRKQL</latexit>

P (X|f(X)) · P (f(X))



Decompose Hard Distribution!

<latexit sha1_base64="2SIKUsQs/XuYy4PWP4eqW1fIWSI=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVO2x4MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpFa1dzksV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGWPoxFTlBg+swQTxeytiEywwsTYeEo2BG/15XXSuap5N7Xrh3ql2cjjKMIZnEMVPLiFJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MHGmONmw==</latexit>

P (X)

More Generally, for any function :

• 𝑃(𝑓(𝑋)) should be easy to model

<latexit sha1_base64="iDSu7qCiNvBV3hy+DO0BNaa1IRw=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMQ9IljA76U2GzM4uM7NCCPkDLx4U8eofefNvnE32oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj28xvP6HSPJaPZpKgH9Gh5CFn1FjpISz1yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4U6oMZwJnpV6qMaFsTIfYtVTSCLU/nV86I2dWGZAwVrakIXP198SURlpPosB2RtSM9LKXif953dSENX/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJ66LqXVev7i8r9VoeRxFO4BTOwYMbqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+AP+hjP4=</latexit>

f
<latexit sha1_base64="IAdb6KsH283NdRrdQp5TWeMcScQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKj1yEgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/tFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVITVvwJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bsuX9UvS9VKFkceTuAUzsGDG6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwCNC4zB</latexit>=

<latexit sha1_base64="UbmHlxebmm133e8ADa/0rck2nTk=">AAACIXicbVDJSgNBEO1xjXGLevTSGITkEmbEJceAF48RzAJJCD09NUmTnoXuGjGM+RUv/ooXD4rkJv6MneWgSR4UPN6r6up6biyFRtv+ttbWNza3tjM72d29/YPD3NFxXUeJ4lDjkYxU02UapAihhgIlNGMFLHAlNNzB7cRvPILSIgofcBhDJ2C9UPiCMzRSN1euFprPbYQnnL6VKvBGqV9oFkfFNvcipNXCareby9slewq6TJw5yZM5qt3cuO1FPAkgRC6Z1i3HjrGTMoWCSxhl24mGmPEB60HL0JAFoDvpdO+InhvFo36kTIVIp+rfiZQFWg8D13QGDPt60ZuIq7xWgn65k4owThBCPlvkJ5JiRCdxUU8o4CiHhjCuhPkr5X2mGEcTataE4CyevEzqFyXnunR1f5mvlOdxZMgpOSMF4pAbUiF3pEpqhJMX8kY+yKf1ar1bX9Z41rpmzWdOyD9YP78TRKQL</latexit>

P (X|f(X)) · P (f(X))



Decompose Hard Distribution!

<latexit sha1_base64="2SIKUsQs/XuYy4PWP4eqW1fIWSI=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquVO2x4MVjBfsB7VKyabYNTbJLkhXK0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G07vM7z5RpVkkH80spr7AY8lCRrDJpFa1dzksV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGWPoxFTlBg+swQTxeytiEywwsTYeEo2BG/15XXSuap5N7Xrh3ql2cjjKMIZnEMVPLiFJtxDC9pAYALP8ApvjnBenHfnY9lacPKZU/gD5/MHGmONmw==</latexit>

P (X)

More Generally, for any function :

• 𝑃(𝑓(𝑋)) should be easy to model
• 𝑓(𝑋) should provide rich semantics

<latexit sha1_base64="iDSu7qCiNvBV3hy+DO0BNaa1IRw=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMQ9IljA76U2GzM4uM7NCCPkDLx4U8eofefNvnE32oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj28xvP6HSPJaPZpKgH9Gh5CFn1FjpISz1yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4U6oMZwJnpV6qMaFsTIfYtVTSCLU/nV86I2dWGZAwVrakIXP198SURlpPosB2RtSM9LKXif953dSENX/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJ66LqXVev7i8r9VoeRxFO4BTOwYMbqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+AP+hjP4=</latexit>

f
<latexit sha1_base64="IAdb6KsH283NdRrdQp5TWeMcScQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKj1yEgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/tFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVITVvwJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bsuX9UvS9VKFkceTuAUzsGDG6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwCNC4zB</latexit>=

<latexit sha1_base64="UbmHlxebmm133e8ADa/0rck2nTk=">AAACIXicbVDJSgNBEO1xjXGLevTSGITkEmbEJceAF48RzAJJCD09NUmTnoXuGjGM+RUv/ooXD4rkJv6MneWgSR4UPN6r6up6biyFRtv+ttbWNza3tjM72d29/YPD3NFxXUeJ4lDjkYxU02UapAihhgIlNGMFLHAlNNzB7cRvPILSIgofcBhDJ2C9UPiCMzRSN1euFprPbYQnnL6VKvBGqV9oFkfFNvcipNXCareby9slewq6TJw5yZM5qt3cuO1FPAkgRC6Z1i3HjrGTMoWCSxhl24mGmPEB60HL0JAFoDvpdO+InhvFo36kTIVIp+rfiZQFWg8D13QGDPt60ZuIq7xWgn65k4owThBCPlvkJ5JiRCdxUU8o4CiHhjCuhPkr5X2mGEcTataE4CyevEzqFyXnunR1f5mvlOdxZMgpOSMF4pAbUiF3pEpqhJMX8kY+yKf1ar1bX9Z41rpmzWdOyD9YP78TRKQL</latexit>

P (X|f(X)) · P (f(X))



Decompose Hard Distribution!
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More Generally, for any function :

• 𝑃(𝑓(𝑋)) should be easy to model
• 𝑓(𝑋) should provide rich semantics
• 𝑓 should be unsupervised for unconditional generation

<latexit sha1_base64="iDSu7qCiNvBV3hy+DO0BNaa1IRw=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKjxwDXjxGMQ9IljA76U2GzM4uM7NCCPkDLx4U8eofefNvnE32oIkFDUVVN91dQSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj28xvP6HSPJaPZpKgH9Gh5CFn1FjpISz1yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4U6oMZwJnpV6qMaFsTIfYtVTSCLU/nV86I2dWGZAwVrakIXP198SURlpPosB2RtSM9LKXif953dSENX/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJ66LqXVev7i8r9VoeRxFO4BTOwYMbqMMdNKAJDEJ4hld4c8bOi/PufCxaC04+cwx/4Hz+AP+hjP4=</latexit>

f
<latexit sha1_base64="IAdb6KsH283NdRrdQp5TWeMcScQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKj1yEgBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/tFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVITVvwJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2bsuX9UvS9VKFkceTuAUzsGDG6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwCNC4zB</latexit>=

<latexit sha1_base64="UbmHlxebmm133e8ADa/0rck2nTk=">AAACIXicbVDJSgNBEO1xjXGLevTSGITkEmbEJceAF48RzAJJCD09NUmTnoXuGjGM+RUv/ooXD4rkJv6MneWgSR4UPN6r6up6biyFRtv+ttbWNza3tjM72d29/YPD3NFxXUeJ4lDjkYxU02UapAihhgIlNGMFLHAlNNzB7cRvPILSIgofcBhDJ2C9UPiCMzRSN1euFprPbYQnnL6VKvBGqV9oFkfFNvcipNXCareby9slewq6TJw5yZM5qt3cuO1FPAkgRC6Z1i3HjrGTMoWCSxhl24mGmPEB60HL0JAFoDvpdO+InhvFo36kTIVIp+rfiZQFWg8D13QGDPt60ZuIq7xWgn65k4owThBCPlvkJ5JiRCdxUU8o4CiHhjCuhPkr5X2mGEcTataE4CyevEzqFyXnunR1f5mvlOdxZMgpOSMF4pAbUiF3pEpqhJMX8kY+yKf1ar1bX9Z41rpmzWdOyD9YP78TRKQL</latexit>

P (X|f(X)) · P (f(X))



Representation-Conditioned Generation (RCG)

Unconditional
• Unsupervised
• Too complex
• Bad performance

Null



Representation-Conditioned Generation (RCG)

Conditional
• Require labels
• Easy to model
• Good performance

Unconditional
• Unsupervised
• Too complex
• Bad performance

“Bird”
“Cat”

+

Null



Representation-Conditioned Generation (RCG)

Conditional
• Require labels
• Easy to model
• Good performance

Unconditional
• Unsupervised
• Too complex
• Bad performance

Rep. Conditioned
• Unsupervised
• Easy to model
• Good performance

“Bird”
“Cat”

+

Null

Null

Representation



Representation-Conditioned Generation (RCG)

Null

Representation



Representation Extraction

Null

Representation
Image

Pre-trained
Encoder

Representation

Representation
Generator

Noise

Representation

Image

Noise

Representation

Image
Generator



Representation Generation

Null

Representation

Image

Pre-trained
Encoder

Representation

Representation
Generator

Noise

Representation

Image

Noise

Representation

Image
Generator



Representation Generation

Null

Representation

Image

Pre-trained
Encoder

Representation

Representation
Generator

Noise

Representation

Image

Noise

Representation

Image
Generator

Linear
Projection

Noisy Representation

Layer

Timestep Embed

+ Layer

fc block x N

Layer

+

Denoised Representation

Layer



• Light-weight model (12 blocks, 1536 channels)
• Accurate representation generation

Representation Generation

Table 7: Distribution mapping ablation experiments. The default encoder is MoCo v3 ViT-B
with 256 projection dimension. Default settings are marked in gray .

Method FID# IS"
Unsupervised

No condition 14.23 57.7
iBOT rep. 8.05 148.7
DINO rep. 7.53 160.8
MoCo v3 cluster labels 6.60 121.9
MoCo v3 rep. 5.07 142.5
Oracle MoCo v3 rep. 4.37 149.0

Supervised

Class labels 5.83 147.3
DeiT rep. 5.51 211.7

(a) Pre-training. RCG achieves good per-
formance with encoders pre-trained with differ-
ent contrastive learning and supervised learning
methods.

Model params lin. FID IS
ViT-S 22M 73.2 5.77 120.8
ViT-B 86M 76.7 5.07 142.5
ViT-L 304M 77.6 5.06 148.2

(b) Model size. RCG scales up with larger
pre-trained encoders with better linear prob-
ing accuracy.

Projection Dim FID IS
32 9.14 81.0
64 6.09 119.2
128 5.19 143.3
256 5.07 142.5
768 6.10 112.7

(c) Projection dimension. The dimensionality
of the image representation is important in RCG’s
performance.

Table 8: Representation generation ablation experiments. The default RDM backbone is of 12
blocks and 1536 hidden dimensions, trained for 100 epochs, and takes 250 sampling steps during
generation. The representation Frechet Distance (rep FD) is evaluated between 50K generated repre-
sentations and representations extracted from the ImageNet training set by MoCo v3 ViT-B. Default
settings are marked in gray .

#Blocks rep FD#
3 0.71
6 0.53
12 0.48
18 0.50
24 0.49

(a) Model depth. A deeper
RDM can improve generation
performance.

Hidden Dim rep FD#
256 5.98
512 1.19

1024 0.56
1536 0.48
2048 0.48

(b) Model width. A wider RDM can im-
prove generation performance.

Epochs FID IS rep FD
10 5.94 124.4 0.87
50 5.21 138.3 0.54
100 5.07 142.5 0.48
200 5.07 145.1 0.47
300 5.05 144.3 0.47

(c) Training epochs. Training
RDM longer improves generation
performance.

#Steps FID IS rep FD
20 5.80 120.3 0.87
50 5.28 133.0 0.55

100 5.15 138.1 0.48
250 5.07 142.5 0.48
500 5.07 142.9 0.49

(d) Diffusion steps. More sampling
steps can improve generation perfor-
mance.

Table 9: Image generation ablation experiments. The default image generator is MAGE-B trained
for 200 epochs. Table 9c evaluates different ⌧ using MAGE-L with RCG trained for 800 epochs and
the FID is evaluated following ADM suite. Default settings are marked in gray .

Conditioning FID IS
No condition 14.23 57.7
Cluster label 6.60 121.9
Class label 5.83 147.3
Generated rep. 5.07 142.5
Oracle rep. 4.37 149.0

(a) Conditioning. Conditioning on gen-
erated representations improves over all
baselines in FID.

Epochs FID IS
100 6.03 127.7
200 5.07 142.5
400 4.48 158.8
800 4.15 172.0

(b) Training epochs. Longer train-
ing can improve generation perfor-
mance.

⌧ 0.0 1.0 3.0 5.0 6.0 7.0
FID 3.44 2.59 2.29 2.31 2.15 2.31
IS 186.9 228.5 251.3 252.7 253.4 252.6

(c) Classifier-free guidance scale. ⌧ = 6 achieves
the best FID and IS for RCG-L.

their substantial improvements over the unconditional baseline. Additionally, an encoder trained
with DeiT [62] in a supervised manner also exhibits impressive performance, indicating RCG’s
adaptability to both supervised and self-supervised pre-training approaches.

We also notice that using representations from MoCo v3 achieves better FID than using representa-
tions from DINO/iBOT. This is likely because only MoCo v3 uses an InfoNCE loss. Literature has
shown that optimizing InfoNCE loss can maximize uniformity and preserve maximal information in
the representation. The more information in the representation, the more guidance it can provide for
the image generator, leading to better and more diverse generation. To demonstrate this, we com-
pute the uniformity loss on representations [65]. Lower uniformity loss indicates higher uniformity
and more information in the representation. The uniformity loss of representations from MoCo v3,
DINO, and iBOT is -3.94, -3.60, and -3.55, respectively, which aligns well with their generation
performance.
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• RCG consistently improves different image generators
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New SOTA in Unconditional Generation



Figure 5: RCG achieves outstand-
ing unconditional generation perfor-
mance with less training cost. All
numbers are reported under the uncon-
ditional generation setting. The train-
ing cost is measured using a cluster of
64 V100 GPUs. Given that the MoCo
v3 ViT encoder is pre-trained and not
needed for generation, its training cost
is excluded. Detailed computational
cost is reported in Appendix B.1.

Table 2: RCG largely improves the state-of-the-art in unconditional image generation on Im-
ageNet 256⇥256. All numbers are reported under the unconditional generation setting. Following
common practice, we report the number of parameters used during generation. † denotes semi-
parametric methods which require ground-truth ImageNet images during generation.

Unconditional generation #params FID# IS"
BigGAN [19] ⇠70M 38.61 24.7
ADM [18] 554M 26.21 39.7
MaskGIT [10] 227M 20.72 42.1
RCDM† [5] - 19.0 51.9
IC-GAN† [9] ⇠75M 15.6 59.0
ADDP [61] 176M 8.9 95.3
MAGE-B [41] 176M 8.67 94.8
MAGE-L [41] 439M 7.04 123.5
RDM-IN† [4] 400M 5.91 158.8

RCG (MAGE-B) 239M 3.98 177.8
RCG (MAGE-L) 502M 3.44 186.9
RCG-G (MAGE-B) 239M 3.19 212.6
RCG-G (MAGE-L) 502M 2.15 253.4

of RCG and current generative models. RCG achieves a significantly lower FID with less training
cost than current generative models. Specifically, MAGE-B with RCG achieves an unconditional
generation FID of 4.87 in less than a day when trained on 64 V100 GPUs. This demonstrates that
decomposing the complex tasks of unconditional generation into much simpler sub-tasks can signif-
icantly simplify the data modeling process.

RCG largely improves the state-of-the-art in unconditional image generation. In Table 2, we
compare MAGE with RCG and previous state-of-the-art methods in unconditional image generation.
As shown in Figure 8 and Table 2, RCG can generate images with both high fidelity and diversity,
achieving an FID of 3.44 and an Inception Score of 186.9. These results are further enhanced with
the guided version of RCG (RCG-G), which reaches an FID of 2.15 and an Inception Score of 253.4,
significantly surpassing previous methods of unconditional image generation.

RCG’s unconditional generation performance rivals leading methods in class-conditional im-
age generation. In Table 3, we perform a system-level comparison between the unconditional

RCG and state-of-the-art class-conditional image generation methods. MAGE-L with RCG is com-
parable to leading class-conditional methods, with and without guidance. These results demonstrate
that RCG, for the first time, improves the performance of unconditional image generation on com-
plex data distributions to the same level as that of state-of-the-art class-conditional generation meth-
ods, effectively bridging the historical gap between class-conditional and unconditional generation.

In Table 4, we further conduct an apple-to-apple comparison between the class-conditional versions
of LDM-8, ADM, and DiT-XL/2 and their unconditional counterparts using RCG. Surprisingly,
with RCG, these generative models consistently outperform their class-conditional versions by a
noticeable margin. This demonstrates that the rich semantic information from the unconditionally
generated representations can guide the generative process even more effectively than class labels.

7

New SOTA in Unconditional Generation

• SOTA models are poor at unconditional generation
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parable to leading class-conditional methods, with and without guidance. These results demonstrate
that RCG, for the first time, improves the performance of unconditional image generation on com-
plex data distributions to the same level as that of state-of-the-art class-conditional generation meth-
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In Table 4, we further conduct an apple-to-apple comparison between the class-conditional versions
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with RCG, these generative models consistently outperform their class-conditional versions by a
noticeable margin. This demonstrates that the rich semantic information from the unconditionally
generated representations can guide the generative process even more effectively than class labels.

7

New SOTA in Unconditional Generation

• Most prior works focus on retrieval-based generation which
require ground-truth images during generation
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RCG’s unconditional generation performance rivals leading methods in class-conditional im-
age generation. In Table 3, we perform a system-level comparison between the unconditional

RCG and state-of-the-art class-conditional image generation methods. MAGE-L with RCG is com-
parable to leading class-conditional methods, with and without guidance. These results demonstrate
that RCG, for the first time, improves the performance of unconditional image generation on com-
plex data distributions to the same level as that of state-of-the-art class-conditional generation meth-
ods, effectively bridging the historical gap between class-conditional and unconditional generation.

In Table 4, we further conduct an apple-to-apple comparison between the class-conditional versions
of LDM-8, ADM, and DiT-XL/2 and their unconditional counterparts using RCG. Surprisingly,
with RCG, these generative models consistently outperform their class-conditional versions by a
noticeable margin. This demonstrates that the rich semantic information from the unconditionally
generated representations can guide the generative process even more effectively than class labels.
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New SOTA in Unconditional Generation

• RCG further rivals SOTA class-conditional generation
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generator

“surprise”:
unexpected attempt

“what if?”:
novel possibility

“within expectation”
“within expectation”

Return of Unconditional Generation



Takeaways
● Unconditional generation is behind, but it matters

● RCG: decompose distribution and generate representation

● Many new possibilities with unconditional generation!

● Codes are available at https://github.com/LTH14/rcg.

● Poster: Friday afternoon East Exhibit Hall A-C #1603

● Also check our other Spotlight paper MAR: Thursday noon East Exhibit Hall A-
C #1505

https://github.com/LTH14/rcg

