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Abstract

This paper presents Representation-Conditioned image
Generation (RCG), a simple yet effective image genera-
tion framework which sets a new benchmark in class-
unconditional image generation. RCG does not condition
on any human annotations. Instead, it conditions on a
self-supervised representation distribution which is mapped
from the image distribution using a pre-trained encoder.
During generation, RCG samples from such representation
distribution using a representation diffusion model (RDM),
and employs a pixel generator to craft image pixels con-
ditioned on the sampled representation. Such a design
provides substantial guidance during the generative pro-
cess, resulting in high-quality image generation. Tested
on ImageNet 256×256, RCG achieves a Frechet Incep-
tion Distance (FID) of 3.31 and an Inception Score (IS)
of 253.4. These results not only significantly improve
the state-of-the-art of class-unconditional image genera-
tion but also rival the current leading methods in class-
conditional image generation, bridging the long-standing
performance gap between these two tasks. Code is avail-
able at https://github.com/LTH14/rcg.

1. Introduction
Recent advancements in conditional image generation have
yielded impressive results, leveraging human annotations
such as class labels or text descriptions to guide the gen-
erative process [11, 12, 18, 22, 47, 52]. In contrast, un-
conditional image generation which omits such conditional
element has historically been a more challenging task, often
yielding less impressive results [3, 18, 19, 39, 43].

This dichotomy mirrors the one seen between super-
vised and unsupervised learning. Historically, unsupervised
learning lagged behind its supervised counterpart in per-
formance. This gap has narrowed with the advent of self-
supervised learning (SSL), which generates supervisory sig-
nals from the data itself, achieving competitive or superior
results compared to supervised learning [9, 13, 25–27].

Drawing on this analogy, we consider the problem of
self-conditioned image generation as a counterpart to self-
supervised learning in the realm of image generation. This
approach, distinct from traditional unconditional image gen-
eration, conditions the pixel generation process on a rep-
resentation distribution derived from the data distribution
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Figure 1. Self-conditioned image generation framework. Unlike
traditional unconditional image generation methods which simply
map noise distribution to image distribution, self-conditioned im-
age generation consists of three parts: (a) it uses an image en-
coder (e.g., Moco v3) to map the raw image distribution to a
low-dimensional representation distribution; (b) it learns a repre-
sentation generator to map a noise distribution to the representa-
tion distribution; (c) it learns a pixel generator (e.g., LDM [52] or
MAGE [39]) to map a noise distribution to the image distribution
conditioned on the representation distribution.

itself, as shown in Figure 1c.
Self-conditioned image generation is important for sev-

eral reasons. Firstly, self-conditioning on representations
is a more intuitive approach for unconditional image gen-
eration, mirroring an artist’s process of conceptualizing an
abstract idea before translating it onto a canvas. Secondly,
similar to how self-supervised learning has transcended su-
pervised learning, self-conditioned image generation, uti-
lizing extensive unlabeled datasets, has the potential to
exceed the performance of conditional image generation.
Thirdly, by omitting reliance on human annotations, self-
conditioned generation paves the way for generative appli-
cations in domains beyond human annotation capabilities,
such as molecule design or drug discovery.

The core of self-conditioned image generation lies in
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accurately modeling and sampling from an image represen-
tation distribution (Figure 1b). Such image representation
should also retain sufficient information to guide the pixel
generation process. To realize this, we develop a Represen-
tation Diffusion Model (RDM) to generate low-dimensional
self-supervised image representations. This distribution is
mapped from the image distribution using a self-supervised
image encoder (Figure 1a). Our approach offers two signifi-
cant benefits. First, the RDM can capture the diversity of the
representation space’s underlying distribution, enabling it to
generate a variety of representations to facilitate image gen-
eration. Second, this self-supervised representation space is
both structured and of low dimensionality, which simplifies
the representation generation task for a straightforward neu-
ral network architecture. Consequently, the computational
overhead of generating representations is minimal compared
to the pixel generation process.

With RDM, we present Representation-Conditioned im-
age Generation (RCG), a simple yet effective framework for
self-conditioned image generation. RCG consists of three
components: an SSL image encoder (Moco v3 [16]) to
transform the image distribution into a compact representa-
tion distribution, an RDM to model and sample from this
distribution, and a pixel generator to craft image pixels con-
ditioned on the representation. This design enables seamless
integration of RCG with common image generative models
as its pixel generator, improving their class-unconditional
image generation performance by huge margins (Figure 2).

RCG demonstrates exceptional image generation capa-
bilities. Evaluated on ImageNet 256×256, RCG achieves an
FID of 3.56 and an Inception Score of 186.9, significantly
outperforming all previous class-unconditional generation
methods (the closest state-of-the-art result being 7.04 FID
and 123.5 Inception Score [39]). Such results can be fur-
ther improved to 3.31 FID and 253.4 Inception Score with
classifier-free guidance. Remarkably, our results are compa-
rable to or even surpass existing class-conditional generation
benchmarks. These results underscore the great potential of
self-conditioned image generation, potentially heralding a
new era in this field.

2. Related Work
Self-supervised Learning. For a considerable period,
supervised learning was predominantly superior to unsu-
pervised learning across various computer vision tasks
[8, 28, 29, 64]. However, the advent of self-supervised
learning has significantly closed this performance gap. Ini-
tial efforts in self-supervised learning were centered around
creating pretext tasks and training networks to predict asso-
ciated pseudo-labels [23, 44, 46]. Generative models have
also shown the ability to extract representations from im-
ages [19, 49]. A relevant work, DiffAE [49], conditions its
diffusion model on the representation extracted by a seman-
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Figure 2. Class-unconditional image generation performance
on ImageNet 256×256 using different pixel generators. Our
method improves class-unconditional generation quality by huge
margins, regardless of the choice of the pixel generator baseline.

tic encoder. Such semantic encoder is trained from scratch
together with the diffusion model, enabling DiffAE to learn
a meaningful and decodable image representation which fa-
cilitates image manipulations.

Recently, contrastive learning [14, 15, 38, 45] has shown
to be a robust and systematic approach to learning effective
representations, achieving results nearly on par with those of
supervised learning. Researchers have also discovered that
masked image modeling (MIM) is highly effective in self-
supervised learning [4, 26, 35, 39, 48]. Such advancements
in self-supervised learning have led us to explore the concept
of self-conditioned image generation. Our proposed frame-
work, RCG, leverages cutting-edge self-supervised learning
methods to map the image distribution to a compact repre-
sentation distribution.
Image Generation. Recent years have witnessed tremen-
dous progress in deep generative models for image syn-
thesis. One major stream of generative models is built on
top of generative adversarial networks (GANs) [7, 24, 36,
62, 63]. Another stream is based on a two-stage scheme
[11, 12, 37, 39, 51, 60, 61]: first tokenize the image into a
latent space and then apply maximum likelihood estimation
and sampling in the latent space. Recently, diffusion mod-
els [18, 31, 50, 52, 56] have also achieved superior results on
image synthesis. A relevant work, DALLE 2 [50], generates
CLIP image embedding conditioned on CLIP text embed-
dings and image captions and generate images conditioned
on the generated image embeddings, demonstrating superior
performance in text-to-image generation.

Despite their impressive performance, a notable gap ex-
ists between conditional and unconditional generation ca-
pabilities [3, 18, 19, 39, 43]. Prior efforts to narrow this
gap group images into clusters in the representation space
and use these clusters as underlying class labels for self-
conditioning or self-guidance [3, 34, 40]. However, this
implicitly assumes that the dataset, which is supposed to be
unlabeled, is a classification dataset and the optimal number
of clusters is close to the number of the classes. Addition-
ally, these methods fall short of generating diverse represen-
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Figure 3. RCG training framework. The pre-trained SSL image
encoder extracts representations from images and is fixed during
training. To train RDM, we add standard Gaussian noise to the
representations and ask the network to denoise them. To train the
MAGE pixel generator, we add random masking to the tokenized
image and ask the network to reconstruct the missing tokens con-
ditioned on the representation extracted from the same image.

tations – they are unable to produce different representations
within the same cluster or the same underlying class.

Other two relevant works are RCDM [5] and IC-GAN
[10], where images are generated based on representations
extracted from existing images. Nonetheless, these meth-
ods rely on ground-truth images to provide representations
during generation, a requirement that is impractical in many
generative applications.

RCG’s conditioning differs from all prior works. Un-
like previous self-conditioned methods which produced
a discrete set of pre-computed clusters as conditioning,
RCG learns a representation diffusion model to model
the underlying distribution of a representation space and
generates images conditioned on this representation dis-
tribution. The generation of this SSL representation is
achieved through a simple yet effective representation dif-
fusion model. To the best of our knowledge, this is the first
exploration and solution to generating a low-dimensional
SSL representation and using it as conditioning for image
generation. This ability to model and sample from such a
representation distribution allows the pixel generation pro-
cess to be guided by a comprehensive understanding of the
image without the need for human annotations. Conse-
quently, this leads to a significantly better performance than
previous methods in unconditional image generation.

3. Method
RCG comprises three key components: a pre-trained self-
supervised image encoder, a representation generator, and
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Figure 4. RDM’s backbone architecture. Each “Layer” consists
of a LayerNorm layer [1], a SiLU layer [21], and a linear layer. The
backbone consists of an input layer that projects the representation
to hidden dimension 𝐶, followed by 𝑁 fully connected (fc) blocks,
and an output layer that projects the hidden latent back to the
original representation dimension.

a pixel generator. Each component’s design is elaborated
below:
Image Encoder. RCG employs a pre-trained image encoder
to transit the image distribution to a representation distri-
bution. This distribution is characterized by two essential
properties: simplicity for modeling by a representation dif-
fusion model, and richness in high-level semantic content for
guiding pixel generation. We use image encoders pre-trained
with self-supervised contrastive learning methods (Moco v3
[16]), which regularize the representations on a hyper-sphere
while achieving state-of-the-art representation learning per-
formance on ImageNet. We take the representations after
the projection head (256-dim), and each representation is
normalized by its own mean and standard deviation.
Representation Generator. RCG uses a simple yet ef-
fective representation diffusion model (RDM) to sample
from the representation space. RDM employs a fully con-
nected network with multiple residual blocks as its back-
bone, shown in Figure 4. Each block consists of an input
layer, a timestep embedding projection layer, and an output
layer, where each layer consists of a LayerNorm [1], a SiLU
[21], and a linear layer. Such an architecture is controlled
by two parameters: the number of residual blocks 𝑁 , and
the hidden dimension 𝐶.

RDM follows Denoising Diffusion Implicit Models
(DDIM) [55] for training and inference. As shown in Fig-
ure 3a, during training, image representation 𝑧0 is mixed with
standard Gaussian noise variable 𝜖 : 𝑧𝑡 =

√
𝛼𝑡 𝑧0 +

√
1 − 𝛼𝑡𝜖 .

The RDM backbone is then trained to denoise 𝑧𝑡 back to
𝑧0. During inference, RDM generates representations from
Gaussian noise following the DDIM sampling process [55].
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Since RDM operates on highly compacted representations,
it brings marginal computation overheads for both training
and generation (Table 7).
Pixel Generator. The pixel generator in RCG crafts image
pixels conditioned on image representations. Conceptually,
such a pixel generator can be any modern conditional image
generative model by substituting its original conditioning
(e.g., class label or text) with SSL representations. In Fig-
ure 3b, we take MAGE [39], a parallel decoding generative
model as an example. The pixel generator is trained to re-
construct the original image from a masked version of the
image, conditioned on the representation of the same image.
During inference, the pixel generator generates images from
a fully masked image, conditioned on the representation
from the representation generator.

We experiment with three representative generative mod-
els: ADM [18] and LDM [52], both of which are diffusion-
based frameworks, and MAGE [39], a parallel decoding
framework. Our experiments show that all three generative
models achieve much better performance when conditioned
on high-level representations (Figure 2 and Table 6b).
Classifier-free Guidance. One advantage of RCG is that
it seamlessly facilitates classifier-free guidance for uncon-
ditional generation tasks. Classifer-free guidance, known
for enhancing generative model performance, traditionally
was not applicable in unconditional generation frameworks
[33, 39]. This is because classifier-free guidance is de-
signed to provide guidance for conditional image genera-
tion through unconditional generation. Although RCG is
also designed for unconditional generation tasks, the pixel
generator of RCG is conditioned on self-supervised repre-
sentations, and thus can seamlessly integrate classifier-free
guidance which further boosts its generation performance.

RCG follows Muse [11] to enable classifier-free guidance
in its MAGE pixel generator. During training, the MAGE
pixel generator is trained without being conditioned on SSL
representations with 10% probability. During each inference
step, MAGE predicts a logit 𝑙𝑐 conditioned on SSL represen-
tation, and an unconditional logit 𝑙𝑢, for each masked token.
The final logits 𝑙𝑔 are formed by 𝑙𝑐 moving away from 𝑙𝑢 by
the guidance scale 𝜏: 𝑙𝑔 = 𝑙𝑐 + 𝜏(𝑙𝑐 − 𝑙𝑢). MAGE then sam-
ples according to 𝑙𝑔 to fill in the remaining masked tokens.
Additional implementation details of RCG’s classifier-free
guidance are provided in Appendix B.

4. Results
4.1. Setup

We evaluate RCG on ImageNet 256×256 [17] which is a
common benchmark dataset for image generation. We gen-
erate 50K images and report the Frechet Inception Distance
(FID) [30] and Inception Score (IS) [53] as standard metrics
to measure the fidelity and diversity of the generated images.

Table 1. Image generation performance on ImageNet 256×256
without guidance. RCG outperforms all class-conditional and
class-unconditional baselines while requiring similar or less com-
putational costs as later shown in Table 7.

Methods w/o Guidance FID↓ Inception Score↑
Class-conditional Generation

ADM [18] 10.94 101.0
LDM-4 [52] 10.56 103.5
DiT-XL/2 [47] 9.62 121.5
BigGAN-deep [6] 6.95 198.2
MDT-XL/2 [22] 6.23 143.0
MaskGIT [12] 6.18 182.1
CDM [32] 4.88 158.7

Class-unconditional Generation
BigGAN [19] 38.61 24.7
ADM [18] 26.21 39.7
MaskGIT [12] 20.72 42.1
RCDM [5] 19.0 51.9
IC-GAN [10] 15.6 59.0
ADDP [58] 8.9 95.3
MAGE-L [39] 7.04 123.5
RCG-L 3.56 186.9

The FID is measured against the ImageNet validation set.
During the training of RCG’s pixel generator, the image is
resized so that the smaller side is of length 256, and then
randomly flipped and cropped to 256×256. The input to
the SSL encoder is further resized to 224×224 to be com-
patible with its positional embedding size. For our main
results, RCG-L uses vision Transformers (ViT-L) [20] pre-
trained with Moco v3 [16] as the image encoder, a network
with 12 blocks and 1536 hidden dimensions as the back-
bone of RDM, and MAGE-L [39] as the image generator.
The RDM is trained for 200 epochs with a constant learn-
ing rate and MAGE-L is trained for 800 epochs with cosine
learning rate scheduling. More implementation details and
hyper-parameters are provided in Appendix B.

4.2. Class-unconditional Generation

In Table 1, we compare RCG with state-of-the-art genera-
tive models on ImageNet 256×256. Since traditional class-
unconditional generation does not support either classifier
or classifier-free guidance [18, 33], all results in Table 1 are
reported without such guidance.

As shown in Figure 5 and Table 1, RCG can generate
images with both high fidelity and diversity, achieving 3.56
FID and 186.9 Inception Score, which significantly out-
performs previous state-of-the-art class-unconditional im-
age generation methods. Moreover, such a result also out-
performs the previous state-of-the-art class-conditional gen-
eration method (4.88 FID achieved by CDM [32]), bridg-
ing the historical gap between class-conditional and class-
unconditional generation. We further show in Appendix A
that our representation diffusion model can effortlessly fa-
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Figure 5. RCG unconditional image generation results on ImageNet 256×256 without classifier-free guidance. RCG can generate
images with both high fidelity and diversity without conditioning on any human annotations.

Table 2. Image generation performance on ImageNet 256×256
with guidance. RCG seamlessly enables classifier-free guidance
for unconditional image generation, achieving results on par with
state-of-the-art class-conditional generative models with guidance.

Methods w/ Guidance FID↓ Inception Score↑
Class-conditional Generation

ADM-G, U [18] 3.94 215.8
LDM-4-G [52] 3.60 247.7
U-ViT-L-G [2] 3.40 -
DiT-XL-G [47] 2.27 278.2
MDT-XL/2-G [22] 1.79 283.0

Class-unconditional Generation
RCG-L-G 3.31 253.4

cilitate class-conditional representation generation, thereby
enabling RCG to also adeptly perform class-conditional im-
age generation. This result demonstrates the effectiveness
of RCG and further highlights the great potential of self-
conditioned image generation.

4.3. Classifier-free Guidance

Traditional frameworks for class-unconditional image gen-
eration lack the ability to employ classifier guidance [18] in
the absence of class labels. Moreover, they are also incom-
patible with classifier-free guidance as the guidance itself is
from unconditional generation. A significant advantage of
RCG lies in its ability to integrate classifier-free guidance
into its pixel generator. As shown in Table 2, RCG’s per-

Table 3. FID and Inception Score with different classifier-free
guidance scales 𝜏. The FID is stable for 𝜏 ⩾ 1, while a larger 𝜏
keeps improving the Inception Score.

𝜏 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

FID 3.56 3.29 3.37 3.44 3.31 3.33 3.31 3.39
IS 186.9 228.5 242.4 251.3 250.5 252.7 253.4 252.6

formance is notably improved by classifier-free guidance,
reaching levels comparable to leading class-conditional im-
age generation methods that utilize guidance. We also ab-
late our classifier-free guidance scale 𝜏, as shown in Table 3.
𝜏 = 1 can both improve FID and IS, and a larger 𝜏 keeps
improving the Inception Score.

4.4. Ablations

This section provides a comprehensive ablation study of the
three core components of RCG. Our default setup uses Moco
v3 ViT-B as the pre-trained image encoder, an RDM with
a 12-block, 1536-hidden-dimension backbone trained for
100 epochs, and a MAGE-B pixel generator trained for 200
epochs. The default setting is marked with gray throughout
Tables 4 to 6. Unless otherwise stated, all other properties
and modules are set to the default settings during each com-
ponent’s individual ablation.
Pre-trained Encoder. We explore different pre-trained im-
age encoder setup in Table 4. Table 4a compares image en-
coders trained via various SSL methods (Moco v3, DINO,
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Method FID IS
No condition 14.23 57.7
Moco v3 [16] 5.07 142.5
DINO [9] 7.53 160.8
iBOT [65] 8.05 148.7

(a) Pre-training method. RCG achieves
good performance with encoders pre-trained
with different contrastive learning methods.

Model params lin. FID IS
ViT-S 22M 73.2 5.77 120.8
ViT-B 86M 76.7 5.07 142.5
ViT-L 304M 77.6 5.06 148.2

(b) Model size. RCG scales up with larger pre-
trained encoders with better linear probing accuracy.

Projection Dim FID IS
32 9.14 81.0
64 6.09 119.2
128 5.19 143.3
256 5.07 142.5
768 6.10 112.7

(c) Projection dimension. The dimension-
ality of the image representation is impor-
tant in RCG’s performance.

Table 4. Pre-trained encoder ablation experiments on ImageNet 256×256. If not specified, the default pre-trained encoder is Moco v3
ViT-B with 256 projection dimension. Default settings are marked in gray .

#Blocks FID IS
3 7.53 113.5
6 5.40 132.9

12 5.07 142.5
18 5.20 141.9
24 5.13 141.5

(a) Model depth. A deeper
RDM can improve generation
performance.

Hidden Dim FID IS
256 12.99 67.3
512 9.07 99.8

1024 5.35 132.0
1536 5.07 142.5
2048 5.09 142.8

(b) Model width. A wider RDM can
improve generation performance.

Epochs FID IS
10 5.94 124.4
50 5.21 138.3

100 5.07 142.5
200 5.07 145.1
300 5.05 144.3

(c) Training epochs. Train-
ing RDM longer can improve
generation performance.

#Steps FID IS
20 5.80 120.3
50 5.28 133.0

100 5.15 138.1
250 5.07 142.5
500 5.07 142.9

(d) Diffusion steps. More sam-
pling steps can improve genera-
tion performance.

Table 5. RDM ablation experiments on ImageNet 256×256. If not specified, the default RDM backbone is of 12 blocks and 1536 hidden
dimensions, trained for 100 epochs, and takes 250 sampling steps during generation. Default settings are marked in gray .

Conditioning FID IS
No condition 14.23 57.7
Class label 5.83 147.3
Generated rep. 5.07 142.5
Oracle rep. 4.37 149.0

(a) Conditioning. Conditioning on gener-
ated representations improves over both un-
conditional and class-conditional baselines.

Method FID IS
LDM [39] 39.13 22.8
LDM+RDM 9.08 (−30.05) 101.9 (+79.1)

ADM [18] 26.21 39.7
ADM+RDM 7.21 (−19.00) 108.9 (+69.2)

MAGE [39] 8.67 94.8
MAGE+RDM 4.18 (−4.49) 177.8 (+83.0)

(b) Pixel generator framework. RCG consistently im-
proves unconditional image generation performance with
different generative models as its pixel generator.

Epochs FID IS
100 6.03 127.7
200 5.07 142.5
400 4.48 158.8
800 4.15 172.0

(c) Training epochs. Training the MAGE
pixel generator longer can improve gener-
ation performance.

Table 6. Pixel generator ablation experiments on ImageNet 256×256. If not specified, the default pixel generator is MAGE-B trained
for 200 epochs. In Table 6b, ADM+RDM is trained for 100 epochs, LDM+RDM is trained for 40 epochs, and MAGE+RDM is trained
for 800 epochs. The LDM paper does not include class-unconditional generation results on ImageNet, so we report its re-implementation
result in [39]. Default settings are marked in gray .

and iBOT), highlighting their substantial improvements over
the unconditional baseline. Additionally, an encoder trained
with DeiT [59] in a supervised manner also exhibits im-
pressive performance (5.51 FID and 211.7 IS), indicating
RCG’s adaptability to both supervised and self-supervised
pre-training approaches.

Table 4b assesses the impact of model size on the pre-
trained encoder. Larger models with better linear prob-
ing accuracy consistently enhance generation performance,
although a smaller ViT-S model (22M parameters) still
achieves decent results (5.77 FID and 120.8 IS).

We further analyze the effect of image representation di-
mensionality, using Moco v3 ViT-B models trained with
different output dimensions from their projection head.
Table 4c shows that neither excessively low nor high-
dimensional representations are ideal – too low dimensions

lose vital image information, while too high dimensions pose
challenges for the representation generator.
Representation Generator. Table 5 ablates the represen-
tation diffusion model. The RDM’s architecture consists of
fully connected blocks, with the network’s depth and width
determined by the number of blocks and hidden dimensions.
Table 5a and Table 5b ablate these parameters, indicating an
optimal balance at 12 blocks and 1536 hidden dimensions.
Further, Table 5c and Table 5d suggest that RDM’s per-
formance saturates at around 200 training epochs and 250
diffusion steps. Despite incurring only marginal computa-
tional costs, the RDM proves highly effective in generating
SSL representations as evidenced in Table 6a.
Pixel Generator. Table 6 ablates RCG’s pixel genera-
tor. Table 6a experiments with class-unconditional, class-
conditional, and self-conditioned MAGE-B, assessing dif-
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ferent conditioning during generation. Without any con-
ditioning, the class-unconditional MAGE-B trained for 200
epochs yields only 14.23 FID and 57.7 IS. On the other hand,
when conditioned on generated representations, MAGE-B
achieves 5.07 FID and 142.5 IS, which significantly sur-
passes the class-unconditional baseline and further outper-
forms the class-conditional baseline in FID. This shows that
representations could provide even more guidance than class
labels. It is also quite close to the “upper bound” which is
conditioned on oracle representations from ImageNet real
images during pixel generation, demonstrating the effective-
ness of RDM in generating realistic SSL representations.

Prior works in self-conditioned image generation have
primarily focused on categorizing images into clusters
within the representation space, using these clusters as
pseudo class-conditioning [3, 34, 40]. We also evaluate
the performance of this clustering-based conditioning in
RCG, employing 𝑘-means within the Moco v3 ViT-B rep-
resentation space to form 1000 clusters. Such conditioning
achieves 6.60 FID and 121.9 IS, which falls short of the re-
sults achieved by conditioning on generated representations.
This is because of the limited information contained within
such discrete clusters, which is insufficient for providing de-
tailed guidance for pixel generation. It is also important to
note that this clustering approach relies on prior knowledge
about the total number of classes, a piece of information that
is often not available in general unlabeled datasets.

Conceptually, RCG’s pixel generator can integrate with
various generative models. We validate this by testing ADM,
LDM, and MAGE as pixel generators. As shown in Ta-
ble 6b, conditioning on representations significantly im-
proves the class-unconditional generation performance of
all three generators. Additionally, Table 6c indicates that
extending training epochs further improves performance,
aligning with existing research [18, 39, 52]. These results
show that RCG is a general self-conditioned image genera-
tion framework, seamlessly improving class-unconditional
generation performance when combined with different mod-
ern generative models.

4.5. Computational Cost

In Table 7, we present a detailed evaluation of RCG’s compu-
tational costs, including the number of parameters, training
costs, and generation throughput. The training cost is mea-
sured using a cluster of 64 V100 GPUs. The generation
throughput is measured on a single V100 GPU. As LDM
and ADM measure their generation throughput on a single
NVIDIA A100 [52], we convert it to V100 throughput by
assuming a ×2.2 speedup of A100 vs V100 [54].

RCG-L uses a pre-trained Moco v3 ViT-L encoder, an
RDM with 12 blocks and 1536 hidden dimensions, and a
MAGE-L pixel generator. The training phase involves 200
epochs for the RDM and 800 epochs for the MAGE-L. Dur-

Table 7. Computational cost on ImageNet 256×256.
RCG achieves a much smaller FID with similar or less compu-
tational cost as baseline methods.

Method #Params (M) Training Cost
(days)

Epochs Throughput
(samples/s)

FID

LDM-8 [52] 395 1.2 150 0.9 39.13
ADM [18] 554 14.3 400 0.05 26.21
MAGE-B [39] 176 5.5 1600 3.9 8.67
MAGE-L [39] 439 10.7 1600 2.4 7.04
RCG-B 63+176 0.3+0.8 100+200 3.6 5.07
RCG-B 63+176 0.6+3.3 200+800 3.6 4.18
RCG-L 63+439 0.3+1.5 100+200 2.2 4.23
RCG-L 63+439 0.6+6.0 200+800 2.2 3.56

ing the generation process, the RDM undergoes 250 dif-
fusion steps, while MAGE-L performs 20 parallel decoding
steps. We also report RCG-B’s computational costs and FID
with less training costs and smaller number of parameters
(Moco v3 ViT-B as image encoder, MAGE-B as pixel gener-
ator). Given that the Moco v3 ViT encoder is pre-trained and
not needed for generation, its parameters and training costs
are excluded. As indicated in the table, the RDM module
adds only minor costs in comparison to the pixel generator.
This demonstrates RCG’s compatibility with modern gener-
ative models, highlighting its ability to enhance generation
performance with minimal computational burdens.

4.6. Qualitative Results

Representation Reconstruction. Figure 6 illustrates
RCG’s ability to generate images that align semantically
with given representations. We extract SSL representations
using examples from ImageNet 256×256. For each repre-
sentation, we generate a variety of images by varying the
random seed for the generation process. The images gener-
ated by RCG, while differing in specific details, consistently
capture the semantic essence of the original images. This
result highlights RCG’s capability to leverage semantic in-
formation in image representations to guide the generation
process, without compromising the diversity that is impor-
tant in unconditional image generation.
Representation Interpolation. Leveraging RCG’s depen-
dency on representations, we can semantically transit be-
tween two images by linearly interpolating their respective
representations. Figure 7 showcases such interpolation be-
tween pairs of ImageNet images. The interpolated images
remain realistic across varying interpolation rates, and their
semantic contents smoothly transition from one image to the
other. This shows that the representation space of RCG is
both smooth and semantically rich. This also demonstrates
RCG’s potential in manipulating image semantics within a
low-dimensional representation space, offering new possi-
bilities to control image generation.

7



GT Image Generated Images

Figure 6. RCG image generation results conditioned on representations extracted from images in ImageNet. The generated images
follow the same semantics as the original image but with diverse appearances.
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Figure 7. RCG image generation results conditioned on interpolated representations from two images. The semantics of the
interpolated images gradually transfer between the two images.

5. Discussion
Computer vision has entered a new era where learning from
extensive, unlabeled datasets is becoming increasingly com-
mon. Despite this trend, the training of image generation
models still mostly relies on labeled datasets, which could be
attributed to the large performance gap between conditional
and unconditional image generation. Our paper addresses
this issue by exploring self-conditioned image generation,
which we propose as a nexus between conditional and
unconditional image generation. We demonstrate that the
long-standing performance gap can be effectively bridged
by generating images conditioned on SSL representations

and leveraging a representation diffusion model to model
and sample from this representation space. We believe
this approach has the potential to liberate image generation
from the constraints of human annotations, enabling it to
fully harness the vast amounts of unlabeled data and even
generalize to modalities that are beyond the scope of human
annotation capabilities.
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Figure 8. RCG class-conditional image generation results on ImageNet 256×256. Classes are 1: goldfish, 388: panda, 279: Arctic fox;
323: monarch butterfly, 292: tiger, 933: cheeseburger; 985: daisy, 979: valley, 992: agaric

Table 8. Image generation performance on ImageNet 256×256.
RCG seamlessly enables class-conditional image generation with
a class-conditional RDM.

Methods FID↓ Inception Score↑
Class-uncond. RCG-L 3.56 186.9
Class-uncond. RCG-L-G 3.31 253.4
Class-cond. RCG-L 3.49 215.5
Class-cond. RCG-L-G 3.90 300.7

A. Class-conditional Generation
While unconditional generation is particularly suited for
large unlabeled datasets and less interpretable modalities,
conditional generation offers the distinct advantage of al-
lowing users to direct the model toward generating specific
visual contents. This capability is important in numerous
downstream generative applications. Unlike previous meth-
ods which typically need to re-train or fine-tune the entire
network for different conditioning, RCG seamlessly facili-
tates conditional image generation by training a task-specific
conditional RDM while using the same pixel generator. To

demonstrate this, we experiment with the common class-
conditional image generation task on ImageNet. Specifi-
cally, in addition to the timestep embedding, a class embed-
ding is added to each fully connected block of RDM, en-
abling the generation of representations for a specific class.
The pixel generator then crafts the image pixels conditioned
on the generated class-specific representation. As shown
in Table 8 and Figure 8, this simple modification allows
the user to control the class of the generated image while
keeping RCG’s superior generation performance.

Importantly, conditional RCG does not need to re-train
the representation-conditioned pixel generator, largely re-
ducing the training overheads. For any new conditioning,
only the lightweight RDM needs to be re-trained. This en-
ables pre-training of the SSL encoder and pixel generator on
large-scale unlabeled datasets, and task-specific training of
conditional RDM on a small-scale labeled dataset. We be-
lieve that this property, similar to self-supervised learning,
allows RCG to both benefit from large unlabeled datasets and
adapt to various downstream generative tasks with minimal
overheads.
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Table 9. RDM implementation details.

config value
#blocks 12
hidden dimension 1536
#params 63M
optimizer AdamW [42]
learning rate 5.12e-4
weight decay 0.01
optimizer momentum 𝛽1, 𝛽2 = 0.9, 0.999
batch size 512
learning rate schedule constant
training epochs 200
augmentation Resize(256)

RandCrop(256)
RandomFlip (0.5)

diffusion steps 1000
noise schedule linear
DDIM steps 250
𝜂 1.0

B. Implementation Details
In this section, we describe the implementation de-
tails of RCG, including hyper-parameters, model ar-
chitecture, and training paradigm. Our code
and pre-trained model weights are also released at
https://github.com/LTH14/rcg.
Image Encoder. We use Vision Transformers (ViTs) [20]
pre-trained with Moco v3 [16] as the default image encoder.
We evaluate three ViT variants (ViT-S, ViT-B, and ViT-
L) in the main paper, each trained on ImageNet for 300
epochs. We utilize the image representation after the MLP
projection head, favoring its adjustable dimensionality. An
output dimension of 256 has proven the most effective. The
representation of each image is normalized by its own mean
and variance. Detailed training recipes of our pre-trained
image encoder can be found in [16].
Representation Diffusion Model (RDM). Our RDM ar-
chitecture employs a backbone of multiple fully connected
blocks. We use 12 blocks and maintain a consistent hid-
den dimension of 1536 across the network. The timestep
𝑡 is discretized into 1000 values, each embedded into a
256-dimensional vector. For class-conditional RDM, we
embed each class label into a 512-dimensional vector. Both
timestep and class label embeddings are projected to 1536
dimensions using different linear projection layers in each
block. Detailed hyper-parameters for RDM’s training and
generation can be found in Table 9.
Pixel Generator. We experiment with ADM [18],
LDM [52] and MAGE [39] as the pixel generator. For
representation-conditioned ADM and LDM, we substitute
the original class embedding conditioning with the image
representation. We follow ADM’s original training recipe
to train representation-conditioned ADM for 100 epochs.
We follow LDM-8’s original training recipe, with mod-
ifications including a batch size of 256, a learning rate

Table 10. Rep.-conditioned MAGE implementation details.

config value
optimizer AdamW [42]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum 𝛽1, 𝛽2 = 0.9, 0.95
batch size 4096
learning rate schedule cosine decay [41]
warmup epochs 10
training epochs 800
gradient clip 3.0
label smoothing [57] 0.1
dropout 0.1
augmentation Resize(256)

RandCrop(256)
RandomFlip (0.5)

masking ratio min 0.5
masking ratio max 1.0
masking ratio mode 0.75
masking ratio std 0.25
rep. drop rate 0.1
parallel-decoding temperature 6.0 (B) 11.0 (L)
parallel-decoding steps 20
guidance scale (𝜏) 1.0 (B) 6.0 (L)
guidance scale schedule linear [11]

of 6.4e-5, and a training duration of 40 epochs. For
representation-conditioned MAGE, we replace the default
“fake” class token embedding [C0] with the image repre-
sentation for conditioning. Our implementation of classifier-
free guidance follows Muse [11], incorporating a linear
guidance scale scheduling. Detailed hyper-parameters for
our representation-conditioned MAGE are provided in Ta-
ble 10.

C. Additional Qualitative Results
We include more qualitative results, including class-
unconditional image generation (Figure 9), class-conditional
image generation (Figure 10), and the comparison between
generation results with or without classifier-free guidance
(Figure 11). All results demonstrate RCG’s superior perfor-
mance in image generation.
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Figure 9. More RCG class-unconditional image generation results on ImageNet 256×256.
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Figure 10. More RCG class-conditional image generation results on ImageNet 256×256. Classes are 874: trolleybus, 664: monitor,
249: malamute; 952: fig, 968: cup, 256: Newfoundland; 789: shoji, 659: mixing bowl, 681: notebook; 119: rock crab, 629: lipstick, 192:
cairn; 359: ferret, 9: ostrich, 277: red fox.
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w/o CFG w/ CFG w/o CFG w/ CFG w/o CFG w/ CFG

Figure 11. Class-unconditional image generation results on ImageNet 256×256, with or without classifier-free guidance. RCG achieves
strong generation performance even without CFG. Incorporating CFG further improves the generation quality.
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