
Reparo: Loss-Resilient Generative Codec for Video Conferencing
Tianhong Li Vibhaalakshmi Sivaraman Lijie Fan Mohammad Alizadeh Dina Katabi

MIT CSAIL

Abstract
Loss of packets in video conferencing often results in poor

quality and video freezing. Attempting to retransmit the lost
packets is usually not practical due to the requirement for
real-time playback. Using Forward Error Correction (FEC) to
recover the lost packets is challenging since it is difficult to de-
termine the appropriate level of redundancy. In this paper, we
propose a framework called Reparo for creating loss-resilient
video conferencing using generative deep learning models.
Our approach involves generating missing information when a
frame or part of a frame is lost. This generation is conditioned
on the data received so far, and the model’s knowledge of how
people look, dress, and interact in the visual world. Our experi-
ments on publicly available video conferencing datasets show
that Reparo outperforms state-of-the-art FEC-based video
conferencing in terms of both video quality (measured by
PSNR) and video freezes.

1 Introduction

Traditional video codecs create a strong dependency between
encoded frames. For exampe, P-frames depend on previous
frames, and to decode them, the receiver must first decode
the frames on which it depends. If those frames cannot be
decoded due to lost packets, the receiver stalls and cannot
proceed, causing the video to freeze. The only way to make
progress is to either receive the missing data and decode the
needed frames, or to give up and request a new key frame
(called I-frame). The I-frame effectively resets the state of
the decoder, and subsequent frames can then be encoded with
respect to this new state. However, since I-frames must be
compressed independently of other frames, they are much
larger than P-frames, and so the I-frame is usually sent at a
lower quality to mitigate the spike in bitrate. This not only
affects the I-frame’s quality but also the quality of subse-
quent frames. The overall result is that packet loss episodes
can cause a jarring user experience where the video freezes
followed by a period of poor quality until the codec recovers.

There are two broad techniques to combat this problem in
existing systems: retransmission and forward error correction
(FEC). Since real-time applications such as video conferenc-
ing must recover lost packets within a limited latency to meet
the real-time playback requirement, retransmission is only
suitable for scenarios with short round trip times. In all other
cases, such applications rely on FEC to recover lost packets
within an acceptable latency. FEC schemes send redundant
packets, known as “parity” packets, to recover the lost data

using traditional block codes [32, 36] or latency-optimized
streaming codes [38]. However, all FEC approaches face a
challenge in choosing how much redundancy to add since
losses in the Internet are bursty and unpredictable. Too much
redundancy leads to inefficiency and wasted bandwidth, and
too little redundancy leads to undecodable frames, causing
video freezes and quality issues on subsequent frames.

In this paper, we take a different approach to loss recovery
in video conferencing. We neither send redundant packets
nor ask for retransmission. When a loss occurs, the receiver
simply tries its best to “generate” the missing information.
To do so, we build on recent advances in generative deep
learning models. Generative models can reconstruct realis-
tic images from a small amount to zero data. For example,
they can reconstruct an image even if 75% of the pixels are
missing [15, 27]. Unlike traditional video codecs, which use
only the received data to reconstruct the source information,
generative models operate like humans; they use the wealth of
knowledge on how people look, dress, and move to generate
missing information. For example, seeing a person’s eye, they
can generate the other eye, and with a glimpse of one’s arm,
they can generate the whole torso. Our insight is that such
generative models are a natural fit for loss-resilient video con-
ferencing. In particular, since generative models can predict
missing information from their knowledge of the visual world,
they can accurately generate the lost content.

We introduce Reparo, a loss-resilient generative codec for
video conferencing. The design of Reparo involves two steps.
In the first step, we learn how to represent the whole world of
video conferencing frames using a small dictionary of visual
tokens, where each token refers to a patch in a frame. The
objective of this step is to capture how visual objects look
and relate to each other through a small number of abstract
tokens and their relationships. Reparo then operates on tokens.
The transmitter uses a neural network to encode each frame
into its set of tokens, which it packetizes and transmits. Some
of these packets may get lost in the network. The Reparo
receiver has a neural network that can regenerate the missing
tokens from those that it receives and its knowledge of how
tokens relate to each other in the visual world. Finally, the re-
constructed tokens are decoded to produce the original frame.
Fig. 1 illustrates the components of Reparo.

Beyond eliminating the need for transmitting redundant
packets, Reparo offers three additional advantages. First, it
can compress the video efficiently without creating dependen-
cies between transmitted frames. This is because although
Reparo does not leverage temporal relationships across frames
for compression, it captures the prevalent visual features and

1

ar
X

iv
:2

30
5.

14
13

5v
1

 [
cs

.N
I]

 2
3

M
ay

 2
02

3

dependencies between objects and shapes in video conferenc-
ing frames within its codebook, which is learned ahead of
time and is known to both the transmitter and receiver. During
transmission, Reparo need only send token indices as opposed
to the actual tokens and the underlying dependencies.

Second, traditional video codecs have a highly variable bit
rate since keyframes are much larger than other frames. As
a result, it is difficult for traditional video codecs to meet an
exact target bitrate, and the actual bitrate will always fluctuate
during transmission. In contrast, in Reparo, all frames are
equal, and hence Reparo operates at a constant bitrate and can
easily adapt to any target bitrate.

Third, Reparo requires only one-way communication. In
past video-conferencing FEC schemes [38], the receiver sends
an ACK for every decodable frame. The sender waits for the
ACK to retransmit, which could cause even longer freezes
when the round-trip time is long. In contrast, in Reparo, the
receiver does not need to communicate with the transmitter
about undecodable frames; it will always use the received
tokens to reconstruct the lost ones. Even if one frame cannot
be recovered, it will simply wait and render the next frame.

We integrate Reparo with a loss-resilient video conferenc-
ing platform [2], and evaluate Reparo and VP9+Tambur [38],
a recent streaming-code based FEC approach, using the plat-
form. Our results on a corpus of publicly available video
conferencing style videos from YouTube show the following:

1. Reparo consistently improves the visual quality of dis-
played videos over VP9+Tambur for all loss levels.
Specifically, Reparo achieves 34.1 dB, 34.0 dB, and 33.9
dB 10th percentile PSNR under low, medium, and high
loss levels, respectively, outperforming VP9+Tambur by
3.1 dB, 9.8 dB, and 17.9 dB.

2. Reparo nearly eliminates all video freezes, failing to
render only 0.2%, 0.8%, and 2.0% of frames under
low, medium, and high loss levels, respectively when
VP9+Tambur fails to render significantly more frames
for all loss levels (up to 29.2% of frames at high loss).

3. Reparo transmits at a constant bitrate and adapts to a
range of target bitrates smoothly. In rate-limited environ-
ments, Reparo utilizes the full capacity of the link, while
VP9+Tambur needs to keep the average bitrate low to
avoid packet losses due to the high variability of the VP9
encoder’s bitrate.

Overall, Reparo achieves superior loss-resilience and qual-
ity stability compared to existing approaches. One limitation,
however, is that Reparo is more computationally intensive
than traditional methods. Our current implementation requires
high-end GPUs to operate in real-time. A wealth of techniques
have been proposed in recent years to improve the computa-
tional efficiency of neural networks. We leave an exploration
of such techniques to make Reparo accessible to a wider range
of devices to future work. Nevertheless, Reparo presents a
promising approach to loss-resilient video conferencing and
we hope it opens up further research in this area.

2 Related Work

Video Codecs. Video applications typically use classical
codecs such as VP8, VP9, H.264, H.265, and AV1 [1,4,33,39,
40]. These codecs compress video frames using block-based
motion prediction, separating them into keyframes (I-frames)
that are compressed independently and predicted frames (P-
/B-frames) that are compressed based on differences relative
to adjacent frames. While classical codecs are widely sup-
ported and very efficient in slow modes, in real-time video-
conferencing modes, they suffer from inability to accurately
match a desired target bitrate, which leads to packet loss and
frame corruption when they exceed available capacity.

To overcome some of these limitations, several neural
codecs have been proposed in recent years, such as Swift [8],
NAS [48], LiveNAS [24], SRVC [23], Maxine [46], and
DVC [31]. These codecs use an underlying low-quality
video that is enhanced using a Deep Neural Network (DNN)
that may be static, updated periodically, or fine-tuned online.
Reparo differs from such prior neural codecs in two ways.
First, some of these neural codecs still rely on temporal depen-
dencies, wherein an undecodable or unrecoverable frame can
cause one or more subsequent frames to freeze. In contrast,
Reparo has no dependencies between encoded frames and
hence the impact of a loss in one frame does not propagate
to other frames. Second, none of the neural approaches use
generative neural models that synthesize images from a few
small pre-computed tokens.
FEC for Loss Recovery. FEC, or Forward Error Correction,
is a technique used in communication systems to recover
lost data packets without retransmission. Instead of request-
ing the retransmission of lost packets, redundant information
sent by the sender is used by the receiver to reconstruct the
original data. This is particularly important in real-time com-
munication systems such as VoIP and video conferencing,
where retransmission of lost packets can cause unacceptable
delays. Traditional FEC codes such as parity codes [5], Reed-
Solomon (RS) codes [36], and fountain codes [32] are all
block codes that are optimal for random losses, where packets
are lost independently. Recently, researchers have proposed
using streaming codes for FEC [38], achieving better loss re-
covery capabilities than block codes for bursty losses, where
several packets over one or more consecutive frames are lost.

We are the first to propose a neural loss recovery scheme
for video conferencing. Our scheme leverages advances in
generative deep learning models to synthesize lost frames or
lost patches based on its knowledge of the visual world and
by conditioning on the received data.
Generative Neural Networks. In recent years, there has been
significant progress in the development of generative models,
which can create text, audio, images, and videos that are in-
distinguishable from those created by humans [9, 27, 28, 37].
These models use knowledge of the target domain to generate
content under certain conditions. For example, a text gener-

2

Token Indices

Encoder
Network

Reconstructed Frame

Decoder
Network

Video Frame

Generated Token Indices

Packetizer
+

Bitrate
Controller

Transmitter

Receiver

Lossy
Network

Received Packets

3 16 81

34 99 65

59 55 12

1 67 58

Packets

Loss
Recovery
Network

Header Data

Header Data
3 16 81

34 99 65

59 55 12

lost

Figure 1: Overview of Reparo. An encoder-decoder pair converts
between RGB image and quantized image tokens, while we intro-
duce new modules to affect the packetization, bitrate, and loss
recovery in the quantized token space to improve loss-resilience.

ative model can generate a paragraph conditioning on text
prompts [9], and an image generative model can produce an
image of an object using only a partial view [27].

To enhance the use of domain knowledge, many recent
visual generative models have adopted a two-stage design [7,
26, 35, 44, 49]. First, they learn to represent the target domain
using a visual token dictionary. Each visual token corresponds
to a patch in the image and serves as a high-level abstraction
of the visual world. Generation is then performed in this token
space, similar to text generative models. These models have
shown impressive performance in image generative tasks,
such as text-to-image synthesis [37] and image editing [27].

Given these capabilities, generative models are well-suited
for loss-resilient video conferencing. Our work is the first to
apply such advances to synthesize video conferencing frames
when packet losses occur. By conditioning on the received
data, our method can generate video frames identical to the
original frames, achieving loss-resilient video conferencing.

3 Reparo Design

3.1 Overview
Reparo is a generative loss-resilient video codec specifi-
cally designed for video conferencing. As shown in Fig. 1,
Reparo consists of five parts: (1) an encoder that encodes
the RGB video frame into a set of tokens, (2) a packetizer
that organizes the tokens into a sequence of packets, (3) a
bitrate controller that adaptively drops some fraction of the
packetized tokens to achieve a target bitrate, (4) a loss recov-
ery module that recovers the missing tokens in a frame based

Encoder
Network

Codebook

…
0 1 2 3 4 N-2N-1 N

Tokens Indices

0 34 27

64 8 59

16 25 81

99

1

65

55 67 12 58

Index Selection

Decoder
Network

Video Frame Reconstructed Frame

Quantization

Figure 2: Token-based neural codec. The encoder converts
patches from video frames into features and uses a codebook to
quantize the features into tokens by finding the nearest neigh-
bor of each feature in the codebook. The decoder then uses the
tokens to reconstruct the video frame.

on the tokens received by the frame deadline, and (5) a de-
coder that maps the tokens back into an RGB frame. We call
the encoder-decoder combination in Reparo its neural codec,
while the rest of the components help with loss recovery atop
the codec. The encoder, packetizer and bitrate controller are
situated at the transmitter side, while the loss recovery module
and decoder operate at the receiver side. We describe these
modules in detail below.

3.2 Reparo Components

3.2.1 The Codec

In contrast to prior work on loss-resilient video conferencing,
which utilize traditional codecs with FEC-based wrappers,
Reparo employs its own codec based on the concept of a tok-
enizer. Tokenizers are commonly used in generative models to
represent images using a learned codebook of tokens. Instead
of generating images pixel by pixel, images are divided into
patches, and each patch’s features are mapped to a specific
token in the codebook. This reduces the search space of gener-
ative models since the number of tokens in an image is much
smaller than the number of pixels. Each token represents a
vector in feature space. By training a neural network to iden-
tify a small number of feature vectors that can best generate
all images in the training dataset, a set of tokens is selected
for the codebook.

We observe that tokenizers naturally fit the requirements of
a codec since they allow us to compress frames in a video by
expressing them as a set of tokens, which can be transmitted
as indices without the need to transmit the actual tokens. Since
the transmitter and receiver share a codebook, the receiver can
recover the original frames by looking up the token indices
in its codebook and decoding them to the original frames.
Further, since each frame is compressed independently of
other frames based only on its own token indices, losses in
one frame do not affect other frames.

We use a particular tokenizer called VQGAN [12], which

3

Receiver

Token Indices

Deterministic
Packetizer

Pseudo-random
Self-drop

Packets

Transmitter

34 99 25 65

64 59 55 12

8 1 67 58

Header Data
3 27 16 81

Header
3 16 81

34 99 65

59 55 12

1 67 58

Data

Packets After Drop

3 16 81

34 99 65

1 67 58

DataHeader

Received Packets

Decode
Self-drop

Received Packets

34 99 65

1 67 58

Header Data
3 16 81

34

64 8 59

25

99

1

65

55 67 12 58

3 27

16 81

34 99

1

65

67 58

3

16 81

Deterministic
Depacketizer

Received Token Indices

Lossy
Network

…

…

Figure 3: The transmitter first uses a deterministic packetizer to
wrap image tokens into packets. Then a bitrate controller drops
some tokens in each packet to adapt to the target bitrate. The
receiver first decodes which tokens are dropped by the bitrate
controller. It then depacketizes the received packets to extract
the received token indices with the lost tokens identified.

consists of an encoder, a decoder, and a codebook (see Fig. 2).
The encoder is a convolutional neural network (CNN) that
takes patches in an image and maps each one of them to
the nearest neighbor vector in the codebook, i.e., the nearest
token. The decoder is also a CNN that takes a concatenation
of tokens that represent an image and reproduces the original
image.

The compression achieved by VQGAN depends on two
of its parameters: the number of tokens used for each frame,
and the size of the codebook. Since the image is divided into
patches, each mapped to a token, the number of tokens dic-
tates the size of each patch within an image. As the number
of tokens is increased, the smaller each patch becomes. More
tokens allows a more fine-grained reconstruction as it is easier
for a token to represent a smaller patch. However, since we
transmit token indices from the sender to the receiver, more to-
kens means more bits for transmitting all of their indices, and
reduces the compression factor. Similarly, a larger codebook
or dictionary enables a more diverse set of features to choose
from for each token, but requires more bits to represent each
token index. Thus, both of these parameters lead to different
tradeoffs for the achieved bitrate and visual quality. We show
this in Fig. 12.

3.2.2 The Packetizer

After encoding the original image into tokens, Reparo divides
them into several packets to prepare them for transmission.
The packetization strategy is designed to avoid placing adja-
cent tokens in the same packet since the closest tokens in the

Reconstructed Token Indices #Received Tokens Indices #M

Spatiotemporal
Vision

Transformer

Temporal

Spatial
"

ℎ

$

M 34 27

64 8

M 81

M

1

65

55 67 12

3 M M

M 59

29 81

M

1

55 67 12 58

3 34 27

M

29 81

71

1

65

M 67 58

M 34 27

64 8

M 81

M

1

65

55 67 12

3 M M

M 59

16 81

M

1

55 67 12 58

3 34 27

M M M

16 M 81

99

1

65

M 67 M 58

3 34 27

64 8 59

16 25 81

99

1

65

55 67 12 58

Figure 4: Loss recovery module. It uses a spatio-temporal vision
transformer to generate any tokens that are lost using domain
knowledge about human faces along with the received tokens in
the last several frames.

image space are the most helpful for recovery when a token
is lost.

In Fig. 3, the first step in the green box labelled Transmitter
shows our token wrapping strategy for an example with 4×4
tokens that are split into 4 packets. The packet index of the
token at position (i, j) is 2 · (i mod 2)+ j mod 2. Tokens in
each packet are ordered first by their row index, then by their
column index in ascending order. This is just one of many
ways to wrap tokens into packets while avoiding placing
adjacent tokens in the same packet. The strategy needs to
be deterministic so that the receiver can place the received
tokens in the appropriate position in the frame before trying
to recover the missing tokens.

Each packet has a header that includes its frame index,
packet index, and packet size so that the receiver can identify
which frame the tokens belong to and how many packets that
particular frame has.

3.2.3 The Bitrate Controller

Video conferencing applications often need to adjust their bit
rate in response to network congestion. In prior work, this was
achieved by altering the extent of compression to meet the
desired bitrate. In contrast, Reparo can easily adapt its bit rate
by dropping tokens, as it is highly resilient to lost tokens and
degrades gracefully with increasing loss rates. We call this
“self-dropping” since Reparo chooses to drop tokens on its
own even before transmitting them. Remarkably, Reparo can
tolerate up to 50% token loss with only a minimal impact on
video PSNR, as demonstrated in Fig. 5. In practice, Reparo
chooses the tokens it drops deterministically based on the
frame index and packet index (Fig. 3 top row right). This is
to ensure that the receiver can easily identify which token
locations were dropped based simply on the frame and packet
index in the received packet’s header. With this information,
the receiver can decode (Fig. 3 bottom row left) the locations
of the tokens removed by the bitrate controller.

4

3.2.4 Loss Recovery Module

The key ingredient for Reparo to carry out loss recovery is
a deep generative model that leverages received tokens and
video conferencing domain knowledge to generate lost tokens.
For instance, the generative model can synthesize all tokens
associated with a particular human face based on a subset of
those tokens. Similarly, it can produce the token correspond-
ing to a moving hand conditioned on the tokens from previous
frames. In the following sections, we provide a comprehen-
sive description of the architecture, training procedure, and
inference algorithm of our loss recovery module.
Network Architecture. The loss recovery module is a neural
network. It takes as input the received tokens organized ac-
cording to their positions in the original frame. Lost tokens
are expressed with a special token called the Mask token, [M],
as shown in Fig. 4. It also takes as input the tokens from the
past T frames, which provide the context for the scene.

We use a common neural network architecture called
Vision Transformer (ViT) [10]. Transformers have gained
widespread popularity in computer vision and natural lan-
guage processing tasks for predicting missing image patches
or words [9,10,15]. The Vision Transformer employs an atten-
tion module in each layer to aggregate information from all
tokens in an image. To predict a missing token, the attention
module uses the received tokens and weighs them by their
relevance to the missing token. The relevance is computed by
performing a softmax over the dot product of each token with
every other token. To extend the standard vision transformer
structure to video clips, we use a spatio-temporal attention
module [3]. In each transformer block, we perform attention
over the time dimension (across adjacent frames) and then
over the space dimension within a frame. This enables our
loss recovery module to exploit both spatial information from
the same frame and temporal information across consecutive
frames. Specifically, to generate a missing token, the module
can use the nearby tokens in both space and across frames,
as those tokens have a strong correlation with the missing
token. Performing attention over time and space sequentially
significantly reduces the computational cost: attention over
both space and time simultaneously requires O(T 2h2w2) of
GPU memory, while attention first over time and then over
space requires only O(T h2w2 +T 2hw) of GPU memory.

Leveraging temporal information incurs some overhead
as the last few frames need to be held in memory to decode
the next frame. Hence, we limit the temporal dependency
to a maximum (e.g., 6 frames). It is worth noting that using
tokens from previous frames for loss recovery does not cause
Reparo to stall like traditional codecs due to undecodable
frames. Specifically, the spatio-temporal ViT utilizes the six
previous frames while decoding the current frame, allowing
reuse of received tokens across frames to achieve a better
bitrate and loss rate. Every frame is generated and decoded
regardless of the previous frame’s generation result and based

solely on the actually received tokens of previous frames. If
more tokens are lost in the previous frames, the quality of the
current frame’s generation may be poorer, but Reparo will
never stop generating or decoding, unlike classical codecs.
We provide detailed information about our spatio-temporal
ViT structure in §A.2.

It is worth highlighting the difference between our loss
resilience and all past work. Traditionally, loss resilience is
achieved by encoding frames together and adding FEC, at the
transmitter. In contrast, our generative approach allows frames
to be encoded independently at the transmitter without FEC.
The receiver however decodes each frame holistically, looking
both at its received tokens and tokens from past frames to
produce the best generation of the missing tokens.

Training the Network. The goal of the training is to ensure
the resulting neural network can recover from both network
packet losses and tokens self-dropped by the bitrate controller
at the transmitter to achieve a particular target bitrate.

Thus, during training, we simulate both types of losses and
optimize the network weights to recover the original tokens.
Specifically, we simulate the packetization process, and in
each iteration, we randomly sample a self-drop ratio rd from
0 to 0.6. Based on rd , a certain fraction of tokens are dropped
from each packet. Then, a packet drop rate rp is randomly
selected from 0 to 0.8, and packets (and all their tokens) are
dropped based on the selected packet drop rate. At the re-
ceiver, the tokens that have been received are identified based
on frame and packet indices. The missing tokens, whether
dropped due to self-drops or packet loss, are replaced with a
learnable mask token [M] (Fig. 4). This ensures that the input
sequence length to the model is fixed regardless of the num-
ber of dropped tokens, which is a requirement for ViT. The
resulting tokens combined with positional embeddings that
provide spatial and temporal location information for each
token (including the mask tokens) are then provided as the
input of the ViT module. The output of the ViT module is a
complete h×w×T grid with generated or original tokens in
their proper positions (where T represents the number of past
frames), but we only use the last frame’s tokens to reconstruct
the orignal frame using the codec decoder. The loss recovery
module is trained by sandwiching it between the encoder,
packetizer and loss simulator on one side; and the decoder
on the other side, in an architecture similar to that in Fig. 1.
Below we describe the loss function used in the training.

Reconstructive Training Loss. Let z = [zi jk]
h,w,T
i=1, j=1,k=1

denote the latent tokens from the encoder, and M =
[mi jk]

h,w,T
i=1, j=1,k=1 denotes a corresponding binary mask indi-

cating which tokens are missing in the last T frames. The
objective of the training is to reconstruct the missing tokens
from the available tokens. To accomplish this, we add a cross-
entropy loss between the ground-truth one-hot tokens and the
output of the loss recovery network. Specifically,

5

Lreconstructive =−Ez
(

∑
∀i, j,k,mi jk=1,k=T

log p(zi jk|zM)
)
, (1)

where zM represents the subset of received tokens in z, and
p(zi jk|zM) is the probability distribution over the codebook
for position (i, j) in the k-th frame predicted by the recon-
struction network, conditioned on the input received tokens
zM . As is common practice, we only optimize this loss on the
missing tokens of the last frame. Optimizing the loss on all
tokens reduces reconstruction performance, as previously ob-
served [15]. Detailed training schemes of Reparo are included
in §A.
Inference Routine As the deadline for displaying each frame
is hit every 33 ms for 30 fps, we aggregate all received packets
for the current frame (as identified by the frame and packet
indices) and regard all unreceived packets as lost. Once we
place the received tokens in their respective positions corre-
sponding to h×w patches in the frame, we can determine the
exact locations of the missing tokens. We use all the tokens re-
ceived from the previous 6 frames to perform spatio-temporal
loss recovery.

For each token position (i, j) in the current frame, we use
p(zi j|zM), the probability distribution over the codebook pre-
dicted by the loss recovery module, given the received tokens,
to choose the token with the highest probability as the recon-
structed token. The resulting grid of reconstructed tokens are
fed into the neural decoder to generate the RGB frame for
display.

4 Evaluation

We evaluate Reparo using a version of an experimental video
conferencing platform called Ringmaster [2] that has support
for packet loss emulation and state-of-the-art FEC schemes.
We describe our baselines and experimental setup in §4.1.
We evaluate Reparo under network scenarios with random
packet loss in §4.2, and under packet losses induced by a
rate-limited bottleneck link in §4.3. We discuss Reparo’s pa-
rameter choices and latency overheads in §4.4.

4.1 Experiment Setup
Baseline. The Ringmaster platform that we use for evaluation
is equipped with Tambur [38], which is a recent streaming-
codes based FEC solution atop the VP9 video codec [33]
that has been shown to perform better than classical block-
based FEC techniques. Our benchmark for comparison is the
VP9+Tambur baseline. We set Tambur’s latency deadline τ

to 3 frames, and its bandwidth overhead to be approximately
50%-60%. We use the same video conferencing application
parameters as Tambur. The frame rate is set to 30 fps, which
is typical for video conferencing.

Datasets. For training the neural codec in Reparo, we use a
combination of three datasets: the FFHQ dataset (70,000 im-
ages) [21], the CelebAHQ dataset (30,000 images) [20], and
the TalkingHeads dataset (∼30 hours of video) [47]. These
datasets comprise high-resolution human face images and
videos, making them ideal for training Reparo, which is aimed
at improving video conferencing quality. We exclusively used
the TalkingHeads dataset for training the loss recovery mod-
ule, as this module operates on video clips instead of images.

For evaluating Reparo and the baselines in the context of
video conferencing applications, we utilized a dataset that
comprises publicly available videos of five YouTubers. The
dataset consists of five distinct 3-minute videos corresponding
to five different video conferences per YouTuber. The videos
have been cropped and resized to 512×512. Each YouTu-
ber’s videos exhibit unique differences in clothing, hairstyle,
accessories, or background.
Implementation. We conducted evaluations of both
VP9+Tambur and Reparo using Tambur-enabled Ringmas-
ter [38], with different bitrate constraints. To implement
Reparo in the same evaluation environment, we replaced the
original video codec with our neural-based codec; and the
original FEC scheme with our custom packetizer, bitrate con-
troller, and loss recovery module. The Ringmaster [2] setup
reads Y4M videos at the transmitting end and displays the
received videos at the receiver end. Depending on the scheme,
either the VP9 encoder or Reparo’s encoder is used to encode
a frame. Tambur then adds FEC and packetizes the encoded
frame payload while Reparo uses its customized packetizer
and bitrate controller to serialize the frame into packets. Fi-
nally, at the receiver end, either the Tambur+VP9 decoder or
Reparo’s loss recovery module and decoder is used to decode
the received packets and generate the frame. For recording
displayed frames, we used the Simple DirectMedia Layer
(SDL) library. We used the PyTorch Image Quality (PIQ)
library [22] to compute image quality metrics.

Our neural codec and loss recovery modules were imple-
mented in PyTorch, and they operate in real-time on three
A6000 GPUs, processing 30 fps 512x512 videos. One GPU
was used for the transmitter, while two GPUs were employed
for the receiver. As Ringmaster and Tambur are implemented
in C++, we established inter-platform-communication be-
tween Python and C++ using a socket to facilitate communi-
cation between Ringmaster and Reparo.
Metrics. We evaluate three metrics: (1) peak signal-to-noise
ratio (PSNR) between the displayed and original frame, (2)
percentage of non-rendered frames, and (3) latency. PSNR is
computed by comparing the displayed videos to the original
videos at the transmitter. Non-rendered frames are defined dif-
ferently for VP9+Tambur and Reparo. For VP9+Tambur, we
compute the percentage of frames that are not played by the re-
ceiver due to packet loss on that frame itself or dependency on
previously undecodable frames. For Reparo, we define “non-
rendered frames” as those frames with PSNR less than 30 dB,

6

200 250 300 350
Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B)

33.5 34.0 34.4 34.7 35.0

33.6 34.9 34.9 36.2

Median

200 250 300 350
Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B)

Low Loss Level

32.3 33.1 33.6 33.9 34.1

32.3

27.5
31.0

32.7 32.3

10th Percentile

200 250 300 350
Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B) 31.3 32.2 32.8 33.2 33.4

21.0
19.2

17.6

21.9
18.9

Worst 10%

200 250 300 350
Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B)

33.5 34.0 34.4 34.7 35.0

33.5 34.1 34.5 34.9

Median

200 250 300 350
Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B)

Medium Loss Level

32.1 32.9 33.5 33.8 34.0

19.7

24.2
20.9 21.6

10th Percentile

200 250 300 350
Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B) 30.9 31.8 32.4 32.7 32.9

17.1 17.7 16.5 17.5

Worst 10%

200 250 300 350
Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B) 33.2 33.4 33.8 34.3

33.4 34.0 34.3 34.6 35.0
Median

200 250 300 350
Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B)

High Loss Level

31.7 32.6 33.2 33.6 33.9

16.2 16.0 16.9 17.0

10th Percentile

200 250 300 350
Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B) 30.0 30.8 31.2 31.5 31.6

14.4 14.3 14.9 15.2

Worst 10%

VP9+Tambur Reparo

Figure 5: We report the median, 10th percentile, and worst 10% PSNR of VP9+Tambur and Reparo under different loss levels. We vary
the target bitrate of Reparo and VP9+Tambur to cover different achieved bitrates. Reparo’s visual quality at the tail is significantly
better than VP9+Tambur across all loss levels.

as our scheme always tries to generate and render a frame. We
have observed that for our dataset, VP9’s PSNR rarely drops
below 30 dB unless there’s a frame drop, so treating Reparo’s
frames with PSNR below 30 dB as “non-rendered” would
favor VP9+Tambur in comparisons. Non-rendered frames cor-
relate well with standard quality-of-experience (QoE) metrics,
as a large number of non-rendered frames can lead to video
freezes and degrade QoE. Latency, an important metric for
real-time interactivity on video conferencing applications, is
evaluated by measuring the end-to-end delay between when
the frame is read at the transmitter and displayed at the re-
ceiver. One-way propagation delay set to 50 ms. All metrics
are aggregated over all frames of the 25 videos in our corpus,
and presented as averages or distributions depending on the
result. We also compute bitrate by averaging the packet sizes
(without TCP/IP headers) recorded in the Ringmaster logs
over the course of the entire video.

Network Scenarios. We consider two primary scenarios that
can result in packet loss during transmission: (1) an unreliable
network (§4.2), and (2) a rate-limited link (§4.3). In the first
scenario, the network is unreliable and randomly drops pack-

ets due to poor conditions. To simulate this scenario, we use a
GE loss channel that transitions between a “good” state with
a low packet loss rate and a “bad” state with a high packet
loss rate, similar to Tambur’s setup [38]. The probability of
transitioning from the good state to the bad state and vice
versa is fixed at 0.068 and 0.852, respectively. The probabil-
ity of loss in the good state is set to 0.04. These parameters
are set to mimic Tambur’s evaluation, and are computed to
approximate the actual statistics over a large corpus of traces
from Microsoft Teams [38]. We vary the probability of loss
in the bad state to evaluate VP9+Tambur and Reparo’s per-
formance under different loss levels. Specifically, we set it to
0.25 to simulate a low loss level, 0.5 to simulate a medium
loss level, and 0.75 to simulate a high loss level (the default
value in Tambur’s evaluation is 0.5). In the second scenario,
we consider a fixed-rate link which drops packets once sat-
urated. To simulate this, we use a FIFO queue with a fixed
queue length of 6KB and a drain rate of 320 Kbps.

Reparo Parameters. In our experiments, we use a 512×512
frame size and compress it into a 32×32 tokens. With a code-
book size of 1024, each token requires 10 bits to represent its

7

1 10 25 50 75 90
Loss Rate (%)

10
15
20
25
30
35
40

PS
NR

 (d
B)

VP9+Tambur
Reparo

Figure 6: PSNR distribution across frames with Tambur and Reparo under different packet loss rates (for a bitrate of ∼320 Kbps).
The box denotes the 25th and 75th percentile PSNR, the line inside the box denotes the median PSNR while the whiskers denote average
PSNR ± 1.5×standard deviation. Reparo maintains its PSNR within a narrow band around 35 dB regardless of the loss level while
Tambur’s worst frames drop to less than 20 dB PSNR at higher loss rates.

index. The codebook is trained once across the entire dataset
and frozen during evaluation, eliminating the need to transmit
it during video conferencing. A frame of tokens is split into 4
packets, with a packet header size of 4 bytes containing a 20-
bit frame index, a 2-bit packet index, and a 10-bit packet size.
Therefore, to send all the tokens of a frame, each packet re-
quires 324 bytes, resulting in a default bitrate of 311.04 Kbps
(at 30 fps). The tokens in each packet can be dropped up to
50% to match the target bitrate using the “self-drop” mecha-
nism described in §3.2.3. We can further control the bitrate
(and visual quality trade-off) by using a different codebook
and number of tokens per frame as we show in Fig. 12.

4.2 Performance on Lossy Networks
Visual Quality. We first compare the visual quality of video
displayed using VP9+Tambur and Reparo by evaluating the
PSNR under different loss levels. We also vary the target
bitrate to evaluate the performance of our method and baseline
under different bitrate constraints. We measure the median
PSNR, 10th percentile PSNR, and the average PSNR over
frames with the worst 10% PSNR. All metrics are aggregated
across all frames present in our evaluation corpus. The median
represents the “normal” quality of the displayed video, which
occurs during “good” states of the GE loss channel. The 10th

percentile and worst 10% represent the “tail” quality of the
displayed video, which is affected by “bad” states of the GE
loss channel.

As shown in Fig. 5, Reparo achieves higher PSNR with
smaller bitrates under all settings. Specifically, under a simi-
lar bitrate (∼320 Kbps), Reparo improves the 10th percentile
PSNR by 3.1 dB, 9.8 dB, and 17.9 dB under low, medium, and
high loss levels, respectively. The low 10th percentile PSNR
for VP9+Tambur is caused by freezes of displayed video: dur-
ing a freeze, the video is stuck at the last rendered frame.
In contrast, Reparo maintains a high and stable PSNR even
under high loss levels, thanks to two key design elements.
First, Reparo does not have any temporal dependency at the

neural codec level. Encoding into and decoding from tokens
occur on a frame-by-frame basis without any dependency on
a previous frame. Thus, even if a frame’s tokens are mostly
lost, it could have a lower PSNR but will not affect subsequent
frames whose tokens are received. Second, the loss recovery
module uses a deep generative network that leverages domain
knowledge of human face images to generate lost tokens. It
will only fail to generate accurately if a very large portion of
tokens is lost across packets over multiple frames, which is
highly unlikely.

Low Medium High
Loss Level

0

5

10

15

20

25

30

No
n-

re
nd

er
ed

 Fr
am

es
 (%

)

8.0%

13.1%

29.2%

0.2% 0.8% 2.0%

VP9+Tambur
Reparo

Figure 7: Comparison of percentage of non-rendered frames be-
tween Reparo and VP9+Tambur. VP9+Tambur has many more
non-rendered frames than Reparo at all loss levels.

We further show the distribution of frame PSNR values
across the frames in our evaluation corpus with Reparo and
VP9+Tambur at ∼320 Kbps under different packet loss rates
in the “bad” state of the GE channel. As shown in Fig. 6,
Reparo’s distribution and averages of PSNR values are more
or less unaffected by the loss level. With Reparo, almost 99%
of frames have PSNR values larger than 30 dB. The variance
of PSNR values across displayed frames is also much lower

8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
Good

Bad

GE
 S

ta
te

GE State of Each Frame

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
False

True

No
n-

Re
nd

er
ed

Non-Rendered Frames
VP9+Tambur
Reparo

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
Frame Index

10

20

30

40

PS
NR

 (d
B)

PSNR of Each Frame

VP9+Tambur
Reparo

Figure 8: Timeseries comparing Tambur and Reparo on one video and loss pattern. VP9+Tambur experiences short freezes every time
a set of frames are lost with a corresponding decrease in PSNR. Reparo continues rendering frames and its visual quality is a lot more
stable throughout the interval.

with Reparo than VP9+Tambur, showing the stability of the
quality of the displayed video across loss levels. Specifically,
Reparo’s frame PSNR values are mostly between 32.5 dB and
37 dB (>90%)). In contrast, as the loss level becomes higher,
VP9+Tambur is more likely to experience video freezes, re-
sulting in more frames with low PSNR. Particularly, at a 75%
packet loss, Tambur’s average PSNR is 4.9 dB worse, and
its distribution of frame PSNR values shows a big range:
its 25th and 75th percentile PSNR values are 21.8 dB and
35.9 dB respectively. Even at a packet drop probability as
low as 1%, Tambur’s frame PSNR values range from 32.8 dB
(5th percentile) to 38.9 dB (95th percentile). These results
demonstrate that Reparo is more robust and efficient at recov-
ering from packet losses than current FEC schemes for video
conferencing.
Non-Rendered Frames. Another commonly used metric for
evaluating FEC approaches is the frequency of non-rendered
frames, which can cause freezes in the displayed video. One
advantage of Reparo is that it never truly freezes: it always
attempts to generate lost tokens and the frame, regardless
of the packet loss rate. However, in extreme cases, it may
still produce poor generated output. To provide a fair com-
parison, we define frames with a PSNR of less than 30 dB
as “non-rendered frames” for Reparo, since we observed that
VP9’s PSNR rarely drops below 30 dB unless frames are lost
and the video stalls. We note that such a definition favors
VP9+Tambur in its comparisons with Reparo since we do not
penalize VP9+Tambus for low-quality rendered frames.

We evaluated Reparo and VP9+Tambur at similar bitrates
(∼320 Kbps) under various loss levels. As shown in Fig. 7,
Reparo nearly eliminates non-rendered frames under all loss

levels, whereas VP9+Tambur has a noticeable number of non-
rendered frames. This result further demonstrates Reparo’s
effectiveness in displaying consistently high-quality videos
even under severe packet losses, in contrast to current codecs
and FEC schemes that cause extended freezes.
A Detailed Example. To better understand Reparo’s ben-
efits come from, we present a time series of loss patterns,
non-rendered frames, and PSNR values for Reparo and
VP9+Tambur over a 30-second window in Fig. 8 for a partic-
ular video sequence. The loss level is set to medium (packet
loss probability of 0.5 in the bad state). The sequence of lost
frames starting at frame index 71 causes VP9+Tambur to
experience an extended freeze between frame 72 and frame
177, even though many frames in that timeframe were not
lost. This is due to temporal dependencies between video
frames, where frames are compressed based on the differ-
ences between them. As a result, a lost frame can lead to
subsequent undecodable frames (even when they’re received
successfully) until the encoder and decoder are reset using a
keyframe. As expected, VP9+Tambur exhibits much lower
PSNR (∼15 dB) during that timeframe between frames 72
and 177. VP9+Tambur then forces the encoder to transmit
a keyframe to resume the video stream. Subsequent frames’
PSNR values go back to what they were prior to the freeze
period. If such a keyframe is also lost (which is more likely
because a keyframe is much larger than normal frames and
contains more packets since it is compressed independently
of its adjacent frames), it could cause long freezes that span
several seconds.

In contrast, Reparo is much more stable in PSNR and rarely
experiences non-rendered frames, even during periods of loss.

9

Ground
Truth

VP9+Tambur

Reparo

Freeze

Figure 9: Qualitative results of VP9+Tambur and Reparo during a Tambur’s short freeze of 8 frames. The GE loss channel is in a
“bad” state at frames 4, 5, 6, and 8, causing packet losses for both VP9+Tambur and Reparo. VP9+Tambur completely freezes from
frames 3 to 10 because of lost packets, leading to very low PSNR. On the other hand, though Reparo experiences the same GE loss
state as VP9+Tambur, it generates most of the frames and maintains a high PSNR. Even for the frame under 30 PSNR, it still produces
reasonable output and tracks the hand movement accurately.

Reparo may generate one or more frames with low PSNR if
it loses many tokens, as happens at frame 424. However, its
per-frame decoding structure ensures that its visual quality
quickly recovers as tokens for future frames start coming in
starting at frame 425.

To gain a more comprehensive understanding of the ef-
fects of packet loss events, we examine a short freeze event
of VP9+Tambur spanning 8 frames in greater detail and com-
pare it to Reparo in Fig. 9. This figure shows lost frames,
non-rendered frames, frame PSNR values as well as visuals
of the displayed frames in that time interval. As depicted in
the figure, part of the 3rd, 4th, and 5th frames are initially lost,
followed by the loss of the 8th frame. VP9+Tambur does not
render any frames between the 3rd and 10th frames, as is evi-
dent from the “non-rendered” frames line and the unchanged
video frames in the visual strip beneath. Additionally, the
forced keyframe (frame 11) and subsequent frame 12 have

slightly lower PSNR due to the larger size of the keyframe,
which typically has a lower quality to meet the target bitrate
when compressed without any temporal dependency. In con-
trast, Reparo does not experience such a prolonged freeze,
as evidenced by the “non-rendered frames” row and the vi-
sual strip. Although Reparo produces a lower PSNR frame
at the 8th frame, it rapidly recovers once later frames receive
sufficient packets and tokens for high-quality generation.

4.3 Performance on Rate-Limited Networks
In this section, we consider the packet loss caused on a rate-
limited bottleneck link when it saturates. One advantage of
Reparo is its ability to match and transmit at different target
bitrates easily by simply varying the self-drop rate. This is be-
cause, unlike traditional temporal-dependent codecs, Reparo
does not need to transmit keyframes periodically. Instead, ev-

10

0 1000 2000 3000 4000 5000
Frame Index

0

10

20

30

40

50

60

70

80

Fr
am

e
Si

ze
 (K

bi
ts

)

VP9+Tambur
Reparo

Figure 10: Per frame sizes of VP9+Tambur and Reparo for a 3
minute video. Reparo maintains the same frame size across all
frames while VP9 shows variance both across adjacent predicted
frames, and across periodic keyframes that are large.

ery frame is encoded into a set of tokens with the same size
across frames. As shown in Fig. 10, VP9+Tambur needs to
transmit a keyframe periodically, causing spikes in its per-
frame sizes. Even the P-frames in VP9 show quite a bit of
variance in their sizes. In contrast, Reparo can always main-
tain a constant size across frames and consequently, constant
bitrate because its neural codec encodes each frame with the
same number of tokens.

Such a stable bitrate can improve Reparo’s performance
over fixed-capacity bottleneck links. To simulate such a link,
we use a FIFO queue with a constant (drain) rate of r Kbps.
The size of the queue is set to 0.15× r, as such a queue will
introduce a 150 ms delay, which is the upper bound of indus-
try recommendations for interactive video conferencing [43].
Transmitted packets are queued first and drained at the desired
link rate. When the FIFO queue becomes full, subsequent
packets will be dropped. In Fig. 11, we set r to 320 Kbps and
show the average PSNR of Reparo and VP9+Tambur with
different target bitrates for each codec. Note that the target
bitrate for VP9+Tambur typically does not match the actual
bitrate: it is the input parameter for the VP9 codec to encode
a video. As a result, the actual bitrate of VP9+Tambur can
be much larger than the target bitrate of VP9 depending on
the encoding speed and quality parameters. Also, Tambur’s
parity packets typically introduce 50% to 60% bandwidth
overhead, further inflating the actual bitrate of VP9+Tambur.
For example, the 75 Kbps target bitrate corresponds to an ac-
tual average bitrate of 211 Kbps. As a result, we only vary
the target bitrate supplied to VP9+Tambur up to 200 Kbps
because beyond that its actual bitrate with FEC overheads
overshoots the link rate and causes a lot of packet drops. On
the other hand, Reparo’s actual bitrate can exactly match the
target bitrate.

As shown in Fig. 11, the average PSNR achieved by Reparo

150 175 200 225 250 275 300
Target Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B)

Average PSNR vs. Reparo Target Bitrates
Reparo

80 100 120 140 160 180 200
Target Bitrate (Kbps)

15

20

25

30

35

PS
NR

 (d
B)

Average PSNR vs. VP9 Target Bitrates
VP9+Tambur

Figure 11: Average PSNR of Reparo and VP9+Tambur with
different target bitrates for a fixed link capacity of 320 Kbps.
Reparo’s average PSNR improves as the target bitrate is in-
creased. However, VP9+Tambur starts experiencing loss in its
fixed-size queue beyond a target bitrate of 120 Kbps due to large
keyframes that do not fit in the queue.

increases as the target bitrate is increased. This is expected
because fewer tokens are “self-dropped”, allowing for better
reconstruction. However, while the PSNR of VP9+Tambur
initially increases as the target bitrate is increased, it begins
to decrease when the target bitrate is set to 120 Kbps. This
occurs because even with a small target bitrate, the size of a
keyframe across all its packets with VP9 can be much larger
the total number of bytes that the queue can hold. Conse-
quently, many packets of this keyframe may be lost. Addition-
ally, when a keyframe is lost, VP9+Tambur will force another
keyframe, causing the queue to remain full and preventing
any frames from being transmitted, resulting in a frozen video
with very low PSNR over long durations. As the target bitrate
is increased further and this issue with keyframes becomes
more pronounced, VP9+Tambur’s average PSNR worsens.

In practice, congestion control protocols like GCC [6] are
used to adapt the encoder’s target bitrate based on network
observations such as latency and loss. However, this exper-
iment shows that choosing the appropriate target bitrate for
VP9+Tambur is much more challenging than for Reparo. For
VP9+Tambur, the adaptation protocol must be conservative
and operate in a lower bitrate range to limit packet drops. In
contrast, Reparo can continue to benefit from larger target
bitrates as long as they are smaller than the link capacity, and
the best performance is achieved by setting the target bitrate
near the link capacity.

4.4 Other Results

Reparo Ablation Study. To allow Reparo to operate in differ-
ent bitrate regimes, we can adjust its hyper-parameters. For
example, we can compress t adjacent frames into the same
fixed size h×w tokens, which reduces the effective bitrate by
a factor of t at the cost of an additional latency of t−1 frames.
We can also modify the number of residual blocks used in the
encoder and decoder, which changes the number of tokens to
represent a frame. More tokens per frame correspond to better

11

100 200 300 400
Bit Rate (Kbps)

22

24

26

28

30

32

34

36

PS
NR

 (d
B)

t=1, #tokens/frame=32x32, codebook size=16384
t=1, #tokens/frame=32x32, codebook size=1024
t=2, #tokens/frame=32x32, codebook size=1024
t=1, #tokens/frame=16x16, codebook size=1024
t=2, #tokens/frame=16x16, codebook size=1024

Figure 12: Variants of Reparo that operate in different bitrate
regimes. Reparo achieves different bitrates by varying the num-
ber of tokens per frame, its codebook size, and the number of
frames jointly encoded.

PSNR and higher bitrate due to better representational power.
We can also use different codebook sizes; larger codebook
sizes produce higher PSNR at the cost of a larger bitrate. In
Fig. 12, we show the PSNR-bitrate curve of Reparo under
different hyper-parameters with a low loss level, demonstrat-
ing that Reparo can be adapted to a large range of bitrates
by varying the codec and loss recovery module trained under
different hyper-parameters. For example, Reparo can choose
to encode two frames together at the cost of 33 ms higher
latency and achieve almost half bitrate (red curve and orange
curve). Reparo can also use a larger codebook to achieve
higher PSNR at the cost of more bits needed to encode each
token index (red curve and blue curve). By default, we use the
middle red curve (t=1, number of tokens per frame=32×32,
codebook size=1024) for 30 fps 512×512 videos in our main
experiments.

Table 1: Latency breakdown for different parts of Reparo. The
encoder and packetization are at the transmitter side, while the
loss recovery and decoder are at the receiver side.

Encoder Packetization Loss Recovery Decoder

Latency (ms) 9.2±0.1 0.5±0.009 35.6±1.2 15.5±0.2

Latency. In Tab. 1, we present the latency of different mod-
ules in Reparo. The neural codec and loss recovery modules
of Reparo have higher encoding and decoding latencies com-
pared to traditional FEC schemes, since they require heavy
computation. For our unoptimized implementation, the total
inference delay incurred by Reparo is 60.9 ms. With typi-
cal network queuing delays of 50 ms, the end-to-end delay
of Reparo is about 110 ms, which meets the industry rec-
ommendation of 150 ms for maximum tolerable latency for
interactive video applications [43]. We expect that standard

techniques to improve model efficiency [11,18,42] can further
reduce the latency.

5 Limitations

Although Reparo offers several key advantages over tradi-
tional video codecs and existing FEC-based approaches, it
also has some limitations. First, the current implementation of
Reparo is based on PyTorch, and uses transformers which are
computationally intensive [3, 10]. It requires high-end GPUs
to operate at a reasonable speed. This limits the range of
devices on which Reparo can be deployed, and the current im-
plementation may not be suitable for low-end devices such as
smartphones or tablets. However, we note that machine learn-
ing models can typically be sped up for edge device deploy-
ment using more efficient model architectures [11, 18, 34, 42],
hardware design [13, 14, 51], and techniques such as knowl-
edge distillation [17]. We leave an investigation of such opti-
mizations to enable Reparo on edge devices to future work.
Second, similar to all generative models, Reparo requires a sig-
nificant amount of training data to build an accurate dictionary
of visual tokens. Although we have shown that Reparo per-
forms well on publicly available video conferencing videos,
because it learns the distribution of faces and torsos typical to
a video call easily, it may not generalize well to other types of
videos or to videos with different resolutions and frame rates.

Despite these limitations, Reparo represents a promising
approach to loss-resilient video conferencing. Future research
may focus on addressing these limitations and making Reparo
more accessible to a wider range of devices and different
video-based applications.

6 Conclusion

We present Reparo, a novel loss-resilient generative video
conferencing architecture that uses generative deep learning
models to reconstruct missing information without sending
redundant packets or relying on retransmissions. Instead, the
receiver reconstructs missing information using its knowl-
edge of how visual objects look and relate to each other. Our
approach offers several advantages, including maintaining a
constant bit rate, easy adaptation to any target bitrate, and
one-way communication between the transmitter and receiver.
We evaluate Reparo on a corpus of publicly available video
conferencing videos and show that it consistently outperforms
VP9+Tambur, a state-of-the-art loss-resilient video conferenc-
ing platform based on streaming FEC. Reparo achieves a
similar PSNR as VP9+Tambur under mild loss levels and sig-
nificantly improves over VP9+Tambur under heavy loss levels,
while also mostly eliminating video freezes. Our approach
presents a promising solution to the challenges of real-time
video conferencing applications, and we believe it opens up
exciting possibilities for further research in this area.

12

References

[1] AV1 bitstream & decoding process specification. http:
//aomedia.org/av1/specification/.

[2] Ringmaster. https://github.com/microsoft/
ringmaster.

[3] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video
vision transformer. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision, pages 6836–
6846, 2021.

[4] Jim Bankoski, Paul Wilkins, and Yaowu Xu. Techni-
cal overview of VP8, an open source video codec for
the web. In 2011 IEEE International Conference on
Multimedia and Expo, pages 1–6. IEEE, 2011.

[5] Ali Begen. Rtp payload format for 1-d interleaved parity
forward error correction (fec). Technical report, 2010.

[6] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and
Saverio Mascolo. Analysis and design of the google
congestion control for web real-time communication
(webrtc). In Proceedings of the 7th International Con-
ference on Multimedia Systems, pages 1–12, 2016.

[7] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and
William T Freeman. Maskgit: Masked generative image
transformer. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 11315–11325, 2022.

[8] Mallesham Dasari, Kumara Kahatapitiya, Samir R. Das,
Aruna Balasubramanian, and Dimitris Samaras. Swift:
Adaptive video streaming with layered neural codecs. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 103–118, Renton,
WA, April 2022. USENIX Association.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at
scale. In Int. Conf. on Learning Representations (ICLR),
2021.

[11] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. The Journal of
Machine Learning Research, 20(1):1997–2017, 2019.

[12] Patrick Esser, Robin Rombach, and Bjorn Ommer. Tam-
ing transformers for high-resolution image synthesis. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 12873–12883,
2021.

[13] Trevor Gale, Matei Zaharia, Cliff Young, and Erich
Elsen. Sparse gpu kernels for deep learning. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–14.
IEEE, 2020.

[14] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin
Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao,
Yu Wang, et al. Ese: Efficient speech recognition en-
gine with sparse lstm on fpga. In Proceedings of the
2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 75–84, 2017.

[15] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Pi-
otr Dollár, and Ross Girshick. Masked autoencoders are
scalable vision learners. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
16000–16009, June 2022.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[18] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[19] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional ad-
versarial networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
1125–1134, 2017.

[20] Tero Karras, Timo Aila, Samuli Laine, and Jaakko
Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

[21] Tero Karras, Samuli Laine, and Timo Aila. A style-
based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4401–
4410, 2019.

13

http://aomedia.org/av1/specification/
http://aomedia.org/av1/specification/
https://github.com/microsoft/ringmaster
https://github.com/microsoft/ringmaster

[22] Sergey Kastryulin, Jamil Zakirov, Denis Prokopenko,
and Dmitry V. Dylov. Pytorch image quality: Metrics
for image quality assessment, 2022.

[23] Mehrdad Khani, Vibhaalakshmi Sivaraman, and Mo-
hammad Alizadeh. Efficient video compression via
content-adaptive super-resolution. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 4521–4530, 2021.

[24] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol
Ye, and Dongsu Han. Neural-enhanced live streaming:
Improving live video ingest via online learning. In Pro-
ceedings of the Annual conference of the ACM Special
Interest Group on Data Communication on the appli-
cations, technologies, architectures, and protocols for
computer communication, pages 107–125, 2020.

[25] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper
Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali,
Stefan Popov, Matteo Malloci, Alexander Kolesnikov,
et al. The open images dataset v4: Unified image classi-
fication, object detection, and visual relationship detec-
tion at scale. International Journal of Computer Vision,
128(7):1956–1981, 2020.

[26] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho,
and Wook-Shin Han. Autoregressive image genera-
tion using residual quantization. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2022.

[27] Tianhong Li, Huiwen Chang, Shlok Kumar Mishra, Han
Zhang, Dina Katabi, and Dilip Krishnan. Mage: Masked
generative encoder to unify representation learning and
image synthesis. arXiv preprint arXiv:2211.09117,
2022.

[28] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo
Liu, Danilo Mandic, Wenwu Wang, and Mark D Plumb-
ley. Audioldm: Text-to-audio generation with latent
diffusion models. arXiv preprint arXiv:2301.12503,
2023.

[29] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic
gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[30] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. arXiv preprint arXiv:1711.05101,
2017.

[31] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang,
Chunlei Cai, and Zhiyong Gao. DVC: An end-to-end
deep video compression framework. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 11006–11015, 2019.

[32] David JC MacKay. Fountain codes. IEE Proceedings-
Communications, 152(6):1062–1068, 2005.

[33] Debargha Mukherjee, Jingning Han, Jim Bankoski,
Ronald Bultje, Adrian Grange, John Koleszar, Paul
Wilkins, and Yaowu Xu. A technical overview of VP9,
the latest open-source video codec. SMPTE Motion
Imaging Journal, 124(1):44–54, 2015.

[34] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu,
Jie Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient
vision transformers with dynamic token sparsification.
Advances in neural information processing systems,
34:13937–13949, 2021.

[35] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals.
Generating diverse high-fidelity images with vq-vae-2.
Advances in neural information processing systems, 32,
2019.

[36] Irving S Reed and Gustave Solomon. Polynomial codes
over certain finite fields. Journal of the society for in-
dustrial and applied mathematics, 8(2):300–304, 1960.

[37] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10684–10695, 2022.

[38] Michael Rudow, Francis Y Yan, Abhishek Ku-
mar, Ganesh Ananthanarayanan, Martin Ellis, and
KV Rashmi. Tambur: Efficient loss recovery for
videoconferencing via streaming codes. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 953–971, 2023.

[39] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.
Overview of the scalable video coding extension of the
h. 264/avc standard. IEEE Transactions on circuits and
systems for video technology, 17(9):1103–1120, 2007.

[40] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video
coding (HEVC) standard. IEEE Transactions on circuits
and systems for video technology, 22(12):1649–1668,
2012.

[41] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2818–2826, 2016.

[42] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
International conference on machine learning, pages
6105–6114. PMLR, 2019.

14

[43] International Telecommunication Union. ITU-T G.1010:
End-user multimedia QoS categories. In Series G:
Transmission Systems and Media, Digital Systems and
Networks, 2001.

[44] Aäron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural discrete representation learning.
In Advances in Neural Information Processing Systems
(NeurIPS), 2017.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

[46] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-
shot free-view neural talking-head synthesis for video
conferencing. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 10039–10049, 2021.

[47] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-
shot free-view neural talking-head synthesis for video
conferencing. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages
10039–10049, 2021.

[48] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo
Shin, and Dongsu Han. Neural adaptive content-aware
internet video delivery. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), pages 645–661, 2018.

[49] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruom-
ing Pang, James Qin, Alexander Ku, Yuanzhong Xu,
Jason Baldridge, and Yonghui Wu. Vector-quantized
image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627, 2021.

[50] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 586–595, 2018.

[51] Zhekai Zhang, Hanrui Wang, Song Han, and William J
Dally. Sparch: Efficient architecture for sparse matrix
multiplication. In 2020 IEEE International Symposium
on High Performance Computer Architecture (HPCA),
pages 261–274. IEEE, 2020.

15

A Implementation Details

Because of GPU memory limitation, we adopt a two-
stage training recipe for Reparo similar to many prior ap-
proaches [12, 27]. We first train our VQGAN codec which
encodes each video frame into discrete tokens without any
losses. We then fix the VQGAN codec and train the loss re-
covery module on the discrete tokens with self-dropping and
packet loss. In this section, we describe the neural network
structure and training schemes of Reparo’s neural codec and
loss recovery module, as well as the design of the bitrate
controller in detail.

A.1 Neural Codec

QuantizationEncoder
!

Codebook "

…
0 1 2 3 4 N-2N-1 N

Image Features Tokens Indices

0 34 27

64 8 59

16 25 81

99

1

65

55 67 12 58

Reconstructed Tokens Indices

0 34 27

64 8 59

16 25 81

99

1

65

55 67 12 58

Transmitter

Receiver
Codebook "

…
0 1 2 3 4 N-2N-1 N

…

… Index Selection

Reconstructed Quantized Feature#

Decoder
$

Video Frame %

Reconstructed Frame %!"#

Nearest Neighbor

ℎ

"

#

ℎ

"

#

Quantized Features

ℎ

"

#

Figure 13: Token-based neural codec. The transmitter first uses
the encoder to convert patches from video frames into features.
It then uses a codebook to quantize the features into tokens by
finding the nearest neighbor of each feature in the codebook. The
receiver first maps the received and generated tokens to back-
to-image features using the codebook. It then uses a decoder to
reconstruct the video frame.

Model Structure. We use a CNN-based VQGAN [12] en-
coder and quantizer to tokenize the 3×512×512 input frame
to 128×32×32 quantized features, where 128 is the number
of channels of the quantized features. It then uses a codebook
to quantize the features by finding the nearest neighbor of
each feature in the codebook. The codebook is a 1024×128
matrix by default, with 1024 entries, each of which uses a
128-dimensional feature. The decoder operates on the quan-
tized features and reconstructs the 3×512×512 video frame.
The encoder consists of 5 blocks and each block consists
of 2 residual blocks which follow standard ResNet’s resid-
ual block design [16]. After each block in the encoder, the

Table 2: VQGAN codec training setting.

Parameter Value

Optimizer Adam [30]
Base Learning Rate 1e-4
Weight Decay 0
Optimizer Momentum β1,β2 = 0.5,0.9
Batch Size 24
Learning Rate Schedule Constant [29]
Warmup Epochs 0
Gradient Clip 0
Dropout 0

feature vector is down-sampled by 2 using average pooling.
The quantizer then maps each pixel of the encoder’s output
feature map to the nearest token (based on L2 distance) in
the codebook Z with N = 1024 entries, each entry with 128
channels. The decoder consists of another 5 blocks where
each encoder block has 2 residual blocks. After each block in
the decoder, the feature map is up-sampled by 2 using bicubic
interpolation. The tokenizer consists of 23.8M parameters
and the detokenizer consists of 30.5M parameters.
Training schemes. We follow the original VQGAN training
recipe [12] to train the VQGAN. We use a vector-quantize
loss between the image features and quantized tokens that
nudges the image features towards the tokens that they map to,
a reconstruction loss (L1) between the input and final recon-
structed frame, a perceptual loss [50] between the input and
reconstructed frame, and a discriminative loss [19] between
the input and reconstructed frame. Detailed descriptions of
the losses can be found in the VQGAN paper [12].

We use the officially released VQGAN encoder and de-
coder pre-trained on OpenImages [25] to initialize our codec
whenever possible. OpenImages is a large-scale image dataset
consisting of ∼9M natural images. We observe that such ini-
tialization largely speeds up our training (takes ∼ 10 epochs
to converge), but we also note that training from scratch on
our pre-training face datasets can achieve similar performance
with a much longer training time (∼200 epochs). We train our
neural codec using a constant learning rate and train it until
there is no substantial change in the training loss. Please refer
to Tab. 2 for the training recipe of our VQGAN codec.

A.2 Loss Recovery Module

Model Structure. The major component of our loss recov-
ery module is a spatio-temporal ViT network. In our de-
fault setting, the input tokens are of shape C × T × h×w,
where C = 768, T = 6, h = 32, w = 32. We use two sepa-
rate learnable position embeddings, one for time and one for
space, which we add together to provide each input token
its positional information. We then adopt a standard spatio-
temporal ViT architecture [10], which consists of a stack

16

Table 3: Loss recovery module training setting.

Parameter Value

Optimizer Adam [30]
Learning Rate 1.5e-5
Weight Decay 0.05
Optimizer Momentum β1,β2 = 0.9,0.95
Batch Size 24
Learning Rate Schedule Cosine Decay [29]
Warmup Epochs 10
Training Epochs 200
Gradient Clip 3.0
Label Smoothing [41] 0.1
Dropout 0.1
Min. Self-Drop Rate 0
Max. Self-Drop Rate 0.6
Self-Drop Rate Mode 0.3
Self-Drop Rate Std. Dev. 0.3
Min. Packet Loss Rate 0
Max. Packet Loss Rate 0.8

of spatio-temporal Transformer blocks [45]. Each spatio-
temporal block consists of a spatial block and a temporal
block. Each of the two blocks independently consists of a
multi-head self-attention block and a multi-layer perceptron
(MLP) block. In total, we use 20 spatio-temporal Transformer
blocks. The number of heads in each multi-head self-attention
layer is 12, and the MLP ratio is 4. The embedding dimension
throughout the Transformer is 768. Our spatio-temporal ViT
consists of 172M parameters. We note that more Transformer
blocks, more heads in the self-attention layer, and a larger em-
bedding dimension can further improve the performance of
Reparo , but they also introduce more computation overheads.
Training schemes. Tab. 3 provides the training recipe for
our spatio-temporal ViT for loss recovery. The self-drop rate
is sampled from a truncated Gaussian distribution from 0 to
0.6 and centered at 0.3, with a standard deviation of 0.3. The
packet loss rate is uniformly sampled from 0 to 0.8.

A.3 Bitrate Controller
Reparo employs self-dropping to drop a fixed fraction of
tokens across all packets of a frame to achieve the target
bitrate. For example, if the target bitrate is 200 Kbps and the
bitrate when transmitting all tokens is 300 Kbps, the bitrate
controller will sample one-third of the tokens in each packet
to drop.

To minimize the impact of self-dropping on the loss re-
covery module, we drop tokens randomly in each packet, so
that the dropped tokens are distributed uniformly in space
and time. However, randomly dropping tokens in each packet
requires telling the receiver which tokens are dropped, leading
to bandwidth overheads. Otherwise, the receiver will be con-
fused about the position of each received token in the h×w

token map.
To address this issue, we deterministically sample the to-

kens to be self-dropped in each packet based on the frame
index and packet index. We achieve this by setting the random
seed for pseudo-random self-dropping sampling in a packet
to 4× frame index+packet index. Consequently, the receiver
compares the received packet size to the expected packet size
to identify how many tokens were lost. The receiver then
decodes the locations of the lost tokens by simulating the self-
drop procedure on its end by repeating the pseudo-random
sampling procedure with the same seed and drop rate as the
transmitter.

At the start of a video conference, the transmitter selects the
variant of the codec and loss recovery module to use based on
the target bitrate and synchronizes this information with the
receiver. It also communicates the expected number of tokens
per packet and frame during this process. Once the variant is
established, it can adapt to bitrate changes of up to 50% with
self-dropping. If the target bitrate changes significantly, the
transmitter selects a new variant and notifies the receiver.

17

	Introduction
	Related Work
	Reparo Design
	Overview
	Reparo Components
	The Codec
	The Packetizer
	The Bitrate Controller
	Loss Recovery Module

	Evaluation
	Experiment Setup
	Performance on Lossy Networks
	Performance on Rate-Limited Networks
	Other Results

	Limitations
	Conclusion
	Implementation Details
	Neural Codec
	Loss Recovery Module
	Bitrate Controller

