
Few Sample Knowledge Distillation for Efficient Network Compression

Tianhong Li
MIT

tianhong@mit.edu

Jianguo Li
Intel Lab

jianguo.li@intel.com

Zhuang Liu
UC Berkeley

zhuangl@berkeley.edu

Changshui Zhang
Tsinghua University
zcs@tsinghua.edu.cn

Abstract

Deep neural network compression techniques such as
pruning and weight tensor decomposition usually require
fine-tuning to recover the prediction accuracy when the com-
pression ratio is high. However, conventional fine-tuning
suffers from the requirement of full training data and the time-
consuming training procedure. This paper proposes a novel
solution for knowledge distillation from few unlabeled sam-
ples to realize both data efficiency and training/processing
efficiency. We treat the original network as “teacher-net”
and the compressed network as “student-net”. A 1×1 con-
volution layer is added at the end of each layer block of
the student-net, and we fit the block-level outputs of the
student-net to the teacher-net by estimating the parameters
of the added layers. We prove that the added layer does
not introduce extra parameters and computation cost during
inference. Experiments on multiple datasets and network ar-
chitectures verify the method’s effectiveness on student-nets
obtained by various network pruning and weight decom-
position methods. Our method can recover student-net’s
accuracy to the same level as conventional fine-tuning meth-
ods in minutes using only 1% of the full training data. 1

1. Introduction
Deep neural networks have demonstrated extraordinary

success in a variety of fields such as computer vision [19, 11],
speech recognition [12], and natural language processing
[25]. However, their resource-hungry nature greatly hinders
their wide deployment in some resource-limited scenarios.
To address this limitation, many works have been done to
accelerate and/or compress neural networks, among which
network pruning [9, 21] and network weight decomposi-
tion [5, 16] are particularly popular due to their competitive
performance and compatibility.

Network pruning [21, 22] and weight decomposition [34,
17] methods can produce extremely compressed networks,

1Work was done when Tianhong Li was an intern at Intel Labs. Source
codes will be open to the public.

but they usually suffer from significant accuracy drops so
that fine-tuning is required for possible accuracy recovery.
However, current fine-tuning practices are not only time-
consuming, but also require the fully annotated large-scale
training dataset, which may be unavailable in many cases due
to privacy or confidential issues, e.g. for medical data. As a
result, when the compression ratio is high, current methods
may not recover the dropped accuracy if there are very few
annotated training examples or strict training time-budget.

To solve this problem, one may ask if it is possible to
utilize the knowledge from the original large network to the
compressed compact network, since the latter has a similar
block-level structure as the former, and already inherits some
the feature representation power from it. A natural solution
is to use knowledge distillation (KD) [3, 1, 13], a method for
transferring the knowledge from a large “teacher” model to
a compact yet efficient “student” model by matching certain
statistics between them. Further research introduced various
kinds of matching mechanisms [28, 30, 15]. The distillation
procedure typically designs a loss function based on the
matching mechanisms and optimizes the loss during a full
training process. As a result, these methods still require time-
consuming training procedure along with fully annotated
large-scale training dataset, thus fail to meet our goal of
training/processing efficiency and high sample-efficiency.

This paper addresses this issue with a simple and novel
method, namely few-sample knowledge distillation (FSKD),
for efficient network compression, where “efficient” here
means both training/processing efficiency and data-sample
efficiency. As shown in Figure 1, FSKD contains three
steps: compressing teacher-net to obtain student-net, align-
ing student-teacher with the added layers in student-net, and
absorbing the added layers. We first obtain the student-net
by pruning or decomposing the teacher-net using existing
methods, and ensure that both teacher-net and student-net
have the same feature map sizes at each corresponding layer
block. Second, we add a 1×1 conv-layer at the end of each
block of the student-net. We then forward the few samples
of unlabeled data to both the teacher and student, and align
the block-level outputs of the student with the teacher by
estimating the parameters of the added layer, using least

1

ar
X

iv
:1

81
2.

01
83

9v
2 

 [
cs

.L
G

] 
 4

 A
pr

 2
01

9



Least 
square 
error

. . .

. . .

(2) Align (3) Absorb

1x1 conv

Teacher

Student

. . .

. . .

Teacher

Student

. . .

. . .

Teacher

Student

(1) Compress

Figure 1: Three-step of few-sample knowledge distillation. (1) obtain student-net by compressing teacher-net; (2) add 1×1 conv-layer at the
end of each block of student-net (before ReLU), and align teacher and student by estimating the parameter using least-squared regression;
(3) absorb/merge the added 1× 1 conv-layer into the previous conv-layer to obtain final student-net.

square regressions. Because there are very few parameters to
estimate in the added conv-layers, we could obtain a good es-
timation with a very small amount of unlabeled samples. The
aligned student-net has the same number of parameters and
computation cost as the original one, since the added 1×1
convolution can be absorbed into the previous convolution
layer, as we will show later.

FSKD has many potential usages, especially when full
fine-tuning or re-training is not feasible in practice, or the
data at hand is only very limited. We name a few concrete
cases below. First, edge devices have limited computing
resources, while FSKD offers the possibility of on-device
learning to compress deep models. Second, FSKD may help
cloud services obtain a compact model when only a few data
is uploaded by the customer due to privacy or confidential
issues. Third, FSKD enables fast model convergence if there
is a strict time budget for training/fine-tuning.

Our major contributions can be summarized as follows:

• To the best of our knowledge, we are the first to show
that accuracy recovery from compressed network can
be done with few unlabeled samples within minutes
using knowledge distillation on desktop PC.
• The proposed FSKD method is widely applicable to

compressing deep neural networks by pruning or de-
composition based methods.
• We demonstrate significant accuracy improvement from

FSKD over existing distillation techniques, as well
as compression-ratio and speedup gain over tradi-
tional pruning/decomposition based methods on various
datasets and network architectures.

2. Related Work
Network Pruning methods obtain a small network by

pruning weights from a trained larger network, which can
keep the accuracy of the larger model if the prune ratio is

set properly. [10] proposes to prune the individual weights
that are near zero. Recently, filter pruning has become in-
creasingly popular thanks to its better compatibility with
off-the-shelf computing libraries, compared with weights
pruning. Different criteria have been proposed to select the
filters to be pruned, including norm of weights [21], scales
of multiplicative coefficients [22], statistics of next layer
[24], etc. These pruning based methods usually require
iterative loop between pruning and fine-tuning for achiev-
ing better pruning ratio and speedup. Meanwhile, Network
Decomposition methods try to factorize parameter-heavy
layers into multiple lightweight ones. For instance, it may
adopt low-rank decomposition to fully-connection layers
[5], and different kinds of weight decomposition to conv-
layers [16, 17, 34]. However, aggressive network pruning
or network decomposition usually lead to large accuracy
drops, thus fine-tuning is a must to alleviate those drops
[21, 22, 34].

Knowledge Distillation (KD) transfers knowledge from
a pre-trained large teacher-net (or even an ensemble of net-
works) to a small student-net, for facilitating the deployment
at test time. Originally, this is done by regressing the soft-
max output of the teacher model [13]. The soft continuous
regression loss used here provides richer information than
the label based loss, so that the distilled model can be more
accurate than training on labeled data with cross-entropy
loss. Later, various works have extended this approach by
matching other statistics, including intermediate feature re-
sponses [28, 4], gradient [30], distribution [15], Gram matrix
[33], etc. More complicatedly, deep mutual learning [35]
trains a cohort of student-nets and teaches each other col-
laboratively with model distillation throughout the training
process. All these methods require a large amount of data
(known as the “transfer set”) to transfer the knowledge. The
student-nets in KD are usually designed with random weight
initialization. It is of great interest to start the student-nets

2



with extremely pruned or decomposed networks, and ex-
plore a KD solution under the few-sample setting. That is
our motivation. We need emphasize that FSKD has a quite
different philosophy on aligning intermediate responses to
the closest knowledge distillation method FitNet [28]. FitNet
re-trains the whole student-net with intermediate supervision
using a larger amount of data, while FSKD only estimates
parameters for the added 1×1 conv-layer with few samples.
Experiments verify that FSKD is not only more efficient but
also more accurate than FitNet.

Learning with few samples has been extensively stud-
ied under the concept of one-shot or few-shot learning. One
category of methods directly model few-shot samples with
generative models [6, 20], while most others study the prob-
lem under the notion of transfer learning [2, 27]. In the latter
category, meta-learning methods [31, 7] solve the problem
in a learning-to-learn fashion, which has been recently gain-
ing momentum due to their application versatility. Most
studies are devoted to the image classification task, while
it is still less-explored for knowledge distillation from few
samples. Recently, some works tried to address this problem.
[18] constructs pseudo-examples using the inducing point
method, and develops a complicated algorithm to optimize
the model and pseudo-examples alternatively. [23] records
per-layer meta-data for the teacher-net in order to reconstruct
a training set, and then adopts a standard training procedure
to obtain the student-net. Both are very costly due to the
complicated and heavy training procedure. On the contrary,
we aim for an efficient solution for knowledge distillation
from few unlabeled samples.

3. Few Sample Knowledge Distillation

3.1. Overview

Our FSKD method consists of three steps as shown in
Figure 1. First, we obtain a student-net either by pruning
or by decomposing the teacher-net. Second, we add a 1×1
conv-layer at the end of each block of the student-net and
align the block-level outputs between teacher and student
by estimating the parameters of the added layer from few
unlabeled samples. Third, we absorb/merge the added 1×1
conv-layer into the previous conv-layer so that it will not
introducing extra parameters and computation cost into the
student-net.

Three reasons make the idea works efficiently. First,
the compressed student-net inherits partial representation
power from the teacher network, so adding 1×1 conv-layer
is enough to calibrate the student-net and restore the accu-
racy. Second, the 1×1 conv-layers have relatively fewer
parameters, which do not require too many data for the es-
timation. Third, the block-level output from teacher-net
provides rich information as shown in FitNet [28]. Below,
we will first describe our algorithm for block-level output

Algorithm 1 Block-coordinate descent algorithm for FSKD

input Student-net s, teacher-net t, input data {Xi}Ni=1,
number of aligned blocks M , number of iterations T

1: for k = 1 : T do
2: Random flip input dataset to obtain {X ′i}Ni=1;
3: for j = 1 : M do
4: Feed {X ′i}Ni=1 to the end of the j-th block of t, obtain

response {Xt
ij};

5: Feed {X ′i}Ni=1 to the end of the j-th block of s, obtain
response {Xs

ij};
6: Add 1×1 conv-layer with tensor Qj to the end of j-th

block of s;
7: Solve Qj with least-square regression based on Equa-

tion 1;
8: Merge Qj into previous conv-layer Lj with tensor Wj

to obtain new tensor W′
j based on Theorem 1 for student-

net;
9: Update the j-th block of s, to obtain s′;

10: s = s′;
11: end for
12: end for
output absorbed conv-layers {W′

j}Mj=1, updated student-net s′;

alignment, and then prove why the added 1×1 conv-layer
can be absorbed/merged into the previous conv-layer.

3.2. Block-level Alignment

In this section, we provide details of our block-level out-
put alignment algorithm. Suppose Xs,Xt ∈ Rno×d are
the block-level output in matrix form for the student-net and
teacher-net respectively, where d is the per-channel feature
map resolution size. We add a 1×1 conv-layer Q at the end
of each block of student-net before non-linear activation. As
Q is degraded to the matrix form, it can be estimated with
least squared regression as

Q∗ = argmin
Q

∑N

i=1
‖Q ∗Xs

i −Xt
i‖, (1)

where N is the number of samples used, and “*” here means
matrix product. The number of parameters of Q is no × no,
where no is the number of output channels in the block,
which is usually not too large so that we can estimate Q with
a limited number of samples.

Suppose there are M corresponding blocks in the teacher-
net and the student-net required to align, to achieve our goal,
we need minimize the following loss function

L(Qj) =
∑M

j=1

∑N

i=1
‖Qj ∗Xs

ij −Xt
ij‖F , (2)

where Qj is the tensor for the added 1×1 conv-layer of the
j-th block. In practice, we optimize this loss with a block-
coordinate descent (BCD) algorithm [32], which greedily
handles each of the M blocks in the student-net sequen-
tially as shown in Algorithm-1 (FSKD-BCD). We can also

3



minimize this loss using standard SGD on all added parame-
ters (FSKD-SGD). However, FSKD-BCD has the following
advantages over FSKD-SGD:

(1) The BCD algorithm processes each block greedily with
a sequential update rule, and each Q can be solved with
the same set of small number of samples by aligning the
block-level responses between teacher-net and student-
net, while standard SGD considers {Qj} all together
which theoretically requires more data.

(2) The BCD algorithm is much more efficient, which can
be usually done in less than a minute.

Unless otherwise noted, we use the FSKD-BCD algorithm
in our experiments.

3.3. Absorbable 1×1 conv-layer

Now we prove that the added 1x1 conv can be absorbed
into the previous convolutional layer without introducing
additional parameters and computation cost during inference.

Theorem 1. A pointwise convolution with tensor Q ∈
Rn′

o×n
′
i×1×1 can be absorbed into the previous convolution

layer with tensor W ∈ Rno×ni×k×k to obtain the absorbed
tensor W′ = Q ◦W, where ◦ is absorbing operator and
W′ ∈ Rn′

o×ni×k×k if the following conditions are satisfied.

c1. The output channel number of W equals to the input
channel number of Q, i.e., no = n′i.

c2. No non-linear activation layer like ReLU [26] between
W and Q.

The pointwise convolution can be viewed as a linear com-
bination of the kernels in the previous convolution layer.
Due to the space limitation, we put the formal proof and the
detailed form of the absorbing operator in Appendix-A. The
number of output channels of W′ is n′o, which is different
from that of W (i.e., no). It is easy to have the following
corollary.

Corollary 1. When the following condition is satisfied,

c3. the number of input and output channels of Q equals to
the number of output channel of W, i.e., n′i = n′o = no,
Q ∈ Rno×no×1×1,

the absorbed convolution tensor W′ has the same param-
eters and computation cost as W, i.e. both W′,W ∈
Rno×ni×k×k.

This condition is required not only for ensuring the same
parameter size and computing cost, but also for ensuring
the output-size of current layer matching to the input-size of
next layer so that these two layers are connectable.

student-net

teacher-net

pruned

unpruned

pruned

unpruned

L2-loss L2-loss

1x1

Conv: 3x3

1x1 Conv: 3x3

Figure 2: Illustration of FSKD on filter pruning and network slim-
ming. At each block, we copy weights of the unpruned part in
teacher-net to student-net, and align the feature maps of student-net
to those unpruned feature maps of teacher-net by adding a 1×1
conv-layer (red-color) with L2-loss. The added 1×1 layer can be
merged into the previous conv-layer in student-net.

4. Experiments

We perform extensive experiments on different image
classification datasets to verify the effectiveness of FSKD
on various student-net construction methods. Student-nets
can be obtained either by pruning based methods such as
filter pruning [21] and network slimming [22], or by decom-
position based methods such as network decoupling [8]. We
implement the code with PyTorch, and conduct experiments
on a desktop PC with Intel i7-7700K CPU and one NVidia
1080TI GPU. The code will be made public avaiable.

4.1. Student-net from Pruning teacher-net

Filter Pruning

We first obtain the student-nets using the filter pruning
method [21], which prunes out conv-filters according to
the L1 norm of their weights. The L1 norm of filter weights
are sorted and the smallest portion of filters will be pruned
to reduce the number of filter-channels in a conv-layer. Fig-
ure 2 illustrates how FSKD works for block-level alignment
on this case. Note that the number of channels in teacher-
net may be different from that in student-net. However, we
only match the un-pruned part of feature-maps in teacher-
net to the feature maps in the student-net so that FSKD is
applicable in this case.

We make a comprehensive study of VGG-16 [29] on
CIFAR-10 dataset to evaluate the performance of FSKD
along with three different pruning settings. First, we fol-
low the original pruning scheme of [21] and obtain Prune-
A. Second, we propose another more aggressive pruning
scheme named Prune-B, which prunes 10% more filters in
the aforementioned layers, and also pruned 20% filters for
the remaining layers. Third, since previous works show that
one time extremely pruning may yield the pruned network
unable to recovery from fine-tuning, while the iteratively
pruning and fine-tuning procedure is observed effective to

4



Acc.(%) FLOPs(×108) Speedup #Param(×106) Pruned
VGG-16 92.66 3.11 1.00× 15 -
Prune-A 85.42 2.06 1.51× 5.3 64%
Prune-B 47.90 1.33 2.34× 3.4 77%
Prune-C 13.05 1.09 2.85× 1.8 88%

Table 1: Prune-A/B/C for filter pruning of VGG-16 on CIFAR-10
and their accuracy, FLOPs, #parameters, etc.

Acc. (%) #Samples Time (sec)
VGG-16 92.66 50000
Prune-A + FSKD 92.37 100 4.8
Prune-A + FitNet 91.23 100 48.5
Prune-A + FSKD 92.46 500 25.5
Prune-A + FitNet 92.13 500 139.2
Prune-A + Fine-tuning 90.25 500 40.4
Prune-A + Full fine-tuning 92.54 50000 1059.6
Prune-B + FSKD 90.17 100 3.7
Prune-B + FitNet 88.76 100 60.1
Prune-B + FSKD 91.21 500 19.3
Prune-B + FitNet 90.68 500 157.1
Prune-B + Fine-tuning 83.36 500 50.3
Prune-B + Full fine-tuning 91.53 50000 1753.4
Prune-C + FSKD 89.55 100 7.4
Prune-C + FitNet 85.09 100 71.3
Prune-C + FSKD 90.41 500 33.5
Prune-C + FitNet 88.31 500 180.3
Prune-C + Fine-tuning 78.13 500 58.7
Prune-C + Full fine-tuning 90.77 50000 2592.3

Table 2: Performance comparison between FitNet, fine-tuning,
FSKD by student-nets from filter pruning [21] of VGG-16 with
pruning scheme A/B/C on CIFAR-10. “Full fine-tuning” uses full
training data.

obtain extreme model compression [9, 21, 22], we propose
Prune-C which iteratively runs the pruning and FSKD pro-
cedure as described in Appendix-B for 2 iterations to achieve
higher compression rate. Table 1 lists the accuracy, FLOPs
and #parameter information for three student-nets obtained
by these pruning schemes.

For the few-sample setting, we randomly select 100 (10
for each category) and 500 (50 for each category) images
from the CIFAR-10 training set, and keep them fixed in all
experiments. Table 2 lists the results of different methods
of recovering a pruned network, including FitNet [28], fine-
tuning with limited data and full training data [21].

As shown in Table 2, our method is much more efficient
and provides better accuracy recovery than both FitNet and
the fine-tuning procedure adopted in [21]. For instance, for
Prune-B with only 500 samples, our method can recover the
accuracy from 47.9% to 91.2% in 19.3s, while FitNet has
to take 157.1s to recover the accuracy to 90.7%, and few-
sample fine-tuning can only recover the accuracy to 83.4%.
When full training set available, it takes about 30 minutes
for full fine-tuning to reach similar accuracy as FSKD. This

0 100 200 300 400 500
#samples

89

90

91

92

93

A
cc

u
ra

cy
(%

)

Accuracy vs #samples (prune-A)

FSKD

FitNet

Fine-tuning with full data

0 100 200 300 400 500
#samples

82

84

86

88

90

92

A
cc

u
ra

cy
(%

)

Accuracy vs #samples (prune-B)

FSKD

FitNet

Fine-tuning with full data

Figure 3: Accuracy vs #samples on CIFAR-10. Student-net Prune-
A (left) Prune-B (right) by filter pruning [21].

1 2 3 4 5 6 7 8 9 10 11 12

Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
la

ti
on

Correlation before and after FSKD

After

Before

1 2 3 4 5 6 7 8 9 10 11 12 13

Layer

50

60

70

80

90

A
cc

u
ra

cy
(%

)

Accuracy increase during FSKD

Figure 4: Left: Layer-level output correlation between teacher-net
and student-net before and after FSKD on student-nets (Prune-A)
by filter pruning [21]. Right: Accuracy change during sequentially
block-level alignment.

demonstrates the big advantages of FSKD over full fine-
tuning based solution.

Figure 3 further studies the performance versus different
amount of training samples used. It can be observed that our
method keeps outperforming FitNet under the same train-
ing samples. In particular, FitNet experience a noticeable
accuracy drop when the number of samples is less than 100,
while FSKD can still recover the accuracy of the pruned
network to a high level.

We further illustrate the per-layer (block) feature re-
sponses difference between teacher-net and student-net be-
fore and after using FSKD in Figure 4a. Before applying
FSKD, the correlation between teacher-net and student-net
is broken due to the aggressive compression. However, after
FSKD, the per-layer correlations are mostly restored. This
verifies the ability of FSKD for recovering lost information.
We also show the accuracy change during sequentially block-
level alignment in Figure 4b, which clearly demonstrate the
effectiveness of our sequentially block-by-block update in
the FSKD algorithm.

We use FSKD-BCD in all experiments. Appendix-C
evaluates FSKD with more BCD iterations. Appendix-D
makes a comparison between FSKD-BCD and FSKD-SGD.

Network Slimming

We then study the student-net from another filter pruning
method named network slimming [22], which removes in-
significant filter channels and corresponding feature maps
using sparsified channel scaling factors. Network slimming
consists of three steps: sparse regularized training, pruning

5



Filter-prune-ratio Acc. before(%) Acc. after(%) FLOPs(×108) Speedup #Param(×106) Pruned
VGG-19 93.38 - 7.97 1.00× 20 -
70% + FSKD 15.90 93.41 3.91 2.04× 2.2 89%
70% + FitNet 15.90 90.47 3.91 2.04× 2.2 89%
70% + Fine-tuning 15.90 62.86 3.91 2.04× 2.2 89%
ResNet-164 95.07 - 4.99 1.00× 1.7 -
60% + FSKD 54.46 94.19 2.75 1.82× 1.1 37%
60% + FitNet 54.46 88.94 2.75 1.82× 1.1 37%
60% + Fine-tuning 54.46 60.94 2.75 1.82× 1.1 37%
DenseNet-40 94.18 - 5.33 1.00× 1.1 -
60% + FSKD 88.24 93.62 2.89 1.84× 0.5 54%
60% + FitNet 88.24 91.37 2.89 1.84× 0.5 54%
60% + Fine-tuning 88.24 88.98 2.89 1.84× 0.5 54%

Table 3: Performance comparison between FSKD, FitNet and fine-tuning on different network structures obtained by network slimming
[22] with 100 samples randomly selected from CIFAR-10 training set.

Filter-prune-ratio Acc. before(%) Acc. after(%) FLOPs(×108) Speedup #Param(×106) Pruned
VGG-19 72.08 - 7.97 1.00× 20 -
50% + FSKD 9.24 71.98 5.01 1.60× 5.0 75%
50% + FitNet 9.24 69.52 5.01 1.60× 5.0 75%
50% + Fine-tuning 9.24 48.75 5.01 1.60× 5.0 75%
ResNet-164 76.56 - 5.00 1.00× 1.7 -
40% + FSKD 46.07 76.11 3.33 1.50× 1.5 14%
40% + FitNet 46.07 73.87 3.33 1.50× 1.5 14%
40% + Fine-tuning 46.07 57.45 3.33 1.50× 1.5 14%
DenseNet-40 73.21 - 5.33 1.00× 1.1 -
40% + FSKD 60.62 73.26 3.71 1.44× 0.71 36%
40% + FitNet 60.62 71.08 3.71 1.44× 0.71 36%
40% + Fine-tuning 60.62 62.36 3.71 1.44× 0.71 36%

Table 4: Performance comparison between FSKD, FitNet and fine-tuning on different network structures obtained by network slimming
[22] with 500 samples randomly selected from CIFAR-100 training set.

and fine-tuning. Here, we replace the time-consuming fine-
tuning step with our FSKD, and follow the original paper
[22] to conduct experiments to prune different networks on
different datasets. The alignment framework is the same as
the filter pruning case as shown in Figure 2.

We apply FSKD on networks pruned from VGG-19,
ResNet-164, and DenseNet-40 [14], on both CIFAR-10 and
CIFAR-100 datasets. Table 3 lists results on CIFAR-10,
while Table 4 lists results on CIFAR-100. Note that the filter-
prune-ratio (like 70% in Table 3) means the portion of filters
that are removed in comparison to the total number of filters
in the network.

The results show that that FSKD consistently outperforms
FitNet and fine-tuning with a notable margin under the few-
sample setting on all evaluated networks and datasets. This
study demonstrates that FSKD is universally applicable to
various network structure and pruning methods, and can
recover the accuracy of the pruned network using few un-
labeled samples to the same level of fine-tuning using fully
annotated training dataset.

4.2. Student-net from Decomposing teacher-net

student-net

teacher-net

Decoupling

L2-loss
3x3

3x3

3x3

3x3

1x1

1x1

Conv: W Rn×m×3×3

Added 1x1DW PW

Figure 5: Illustration of FSKD on network decoupling. At each
block, we decouple regular-conv in teacher-net into a sum of depth-
wise + pointwise conv-layers as the block of student-net, and align
the feature maps of student-net to that of teacher-net by adding a
1×1 conv-layer (red-color) with L2-loss. The added 1×1 layer can
be merged into previous the pointwise layer in student-net.

6



Acc. before(%) Acc. after (%) GFLOPs Speedup #Param∗(×106) Pruned
VGG-16 (teacher) 68.4 - 15.47 1.00× 14.71 -
Decoupled (T = 2) + FSKD 0.24 62.7 3.76 4.11× 3.35 77.2%
Decoupled (T = 3) + FSKD 1.57 67.1 5.54 2.79× 5.02 65.8%
Decoupled (T = 4) + FSKD 54.6 67.6 7.31 2.12× 6.69 54.5%

ResNet-18 (teacher) 67.1 - 1.83 1.00× 11.17 -
Decoupled (T = 2) + FSKD 0.21 49.5 0.55 3.33× 2.69 75.9%
Decoupled (T = 3) + FSKD 3.99 61.9 0.75 2.44× 3.95 64.6%
Decoupled (T = 4) + FSKD 26.5 65.1 0.95 1.92× 5.20 53.4%
Decoupled (T = 5) + FSKD 53.6 66.3 1.15 1.60× 6.46 42.2%

Table 5: Performance of FSKD on different student-nets obtained by network decoupling [8] VGG-16 and ResNet-18 with different
parameters T on ImageNet dataset. “∗” here means that parameters from FC-layer are not counted, only those from conv-layers are counted,
since decoupling only handles the conv-layers.

In this section, we apply FSKD on a decomposition based
method called network decoupling [8]. Network decoupling
decomposes a regular convolution layer into the sum of
several depth-wise separable blocks, where each such block
consists of a depth-wise (DW) conv-layer and a point-wise
(PW, 1×1) conv-layer. The compression ratio increases as
the number (T ) of such blocks decreases, but the accuracy of
the compressed model will also drop. Since each decoupled
block ends with a 1×1 convolution, we can apply FSKD at
the end of each decoupled block. Figure 5 illustrates how
FSKD works for block-level alignment on this case.

Following [8], we obtain student-nets by decoupling
VGG-16 and ResNet-18 pre-trained on ImageNet with differ-
ent T values. We evaluate the resulted network performance
on the validation set of the ImageNet classification task. We
randomly select one image from each of the 1000 classes in
ImageNet training set to obtain 1000 samples as our FSKD
training set. Table 5 shows the top-1 accuracy of student-net
before and after applying FSKD on VGG-16 and ResNet-18.

It is quite interesting to see that when T is small, we
can recover the accuracy of student-net from nearly random
guess (0.24%, 0.21%) to a much higher level (62.7% and
49.5%) with only 1000 samples. One possible explanation is
that the highly-compressed networks still inherit some rep-
resentation power from the teacher-net i.e., the depth-wise
3×3 convolution, while lacking the ability to output mean-
ingful predictions due to the degraded and inaccurate 1×1
convolution. The FSKD calibrates the 1×1 convolution by
aligning the block-level responses between teacher-net and
student-net so that the lost information in 1×1 convolution
is compensated, and reasonable recovery is achieved.

In all the other cases, FSKD can recover the accuracy
of a highly-compressed network to be comparable with the
original network. This shows that FSKD can be applied to
student-net compressed by network decomposition, and that
FSKD can achieve great performance on large and difficult
dataset such as ImageNet.

Acc. (%) #Samples
VGG-16 92.66 50000 (CIFAR-10)
Prune-B + FSKD 90.17 100 (CIFAR-10)
Prune-B + FSKD 90.15 100 (CIFAR-100)
Prune-B + FSKD 91.21 500 (CIFAR-10)
Prune-B + FSKD 91.20 500 (CIFAR-100)

Table 6: Performance comparison between FSKD using samples
from CIFAR-10 and CIFAR-100. Student-nets from filter pruning
[21] of VGG-16 with pruning scheme B on CIFAR-10.

5. Analysis and Discussion
FSKD with Arbitrary Data

In this section, we try to answer the following question:
is FSKD totally label-free? For example, is FSKD still
valid if the available few samples are arbitrary images and
the teacher network never sees these images before? To
answer this question, we evaluate FSKD’s performance on
VGG-16 model trained on CIFAR-10 and compressed using
filter pruning (prune-B), with the few samples for FSKD are
randomly selected from CIFAR-100 instead of CIFAR-10.

As shown in Table 6, there is no difference in accuracy be-
tween FSKD using data from CIFAR-10 or CIFAR-100. This
shows that FSKD aligns the student-net with the teacher-net
without any information about the labels of the data. Even
if the input images are of classes it has never seen before
(CIFAR-100 does not include classes in CIFAR-10), FSKD
can still recover the student-net to the same accuracy level.
This further demonstrates FSKD’s potential in situations
where only few samples of unlabeled data are available.

Filter Visualization

In this section, we try to answer why FSKD works so well
that it can provide almost the same results as that of fine-
tuning with full training set. We conduct experiments based
on VGG-13 on CIFAR-10. For a given VGG-13 network,
We first decouple a conv-layer to obtain one DW conv-layer
and one PW conv-layer, as is done in network decoupling

7



Random initialized After SGD After FSKD

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Decouple VGG-13 into DW conv-layer and PW conv-
layers, and show one PW conv-layer with random initialization
(left), after SGD based fine-tuning (middle), and after FSKD (right).
Note values of the PW tensor are scaled into the range (0,1.0) by
the min/max values of the tensor for better visualization.

[8]. Then we visualize the PW conv-layer of the decoupled
layer. For simplicity, we only visualize the PW conv-layer
of the first decoupled layer. We do the visualization on three
VGG-13 network with different parameters:

(1) Initialize the VGG-13 network with the MSRA initial-
ization (Figure 6 left).

(2) Run SGD based fine-tuning on 500 samples for VGG-
13 with random initialization until convergence (Fig-
ure 6 middle).

(3) Run FSKD on 500 samples for VGG-13 with SGD
based initialization (Figure 6 right). The teacher-net is
also a VGG-13 trained on full CIFAR-10 training set.

It clearly shows that the PW conv-layer before fine-tuning is
fairly random on the value range, the one after fine-tuning is
less random, while the one after FSKD further starts to show
regular patterns, which demonstrates that FSKD can distill
the knowledge from the teacher-net to student-net effectively
with few samples.

What if student-nets are hand designed?

Our previous experiments construct student-nets by prun-
ing or decomposing teacher-net, and then apply FSKD to
boost their performance. People may be interested in the
problem “what if student-nets are hand designed with ran-
dom initialization”. In fact, there are two existing works
[18, 23] making some pioneer trials on this topic with spe-
cific methods for “pseudo” examples generation. Here we
conduct experiments to compare our method to these two
methods under the same few-sample setting on the same
dataset MNIST, for a fair comparison.

Due to different network structures used in these two
methods, we make a separate comparison. For [18], the
teacher-net has 3 conv-layers followed by 2 fully-connected
layers. For [23], the teacher-net is a standard LeNet-5. For
both cases, the student-net is the “half-sized” to that of the
corresponding teacher-net in terms of the number of feature
map channels per conv-layers. As the channel number be-
tween student-net and teacher-net is different, we adopt the
same strategy as in Figure 2 for filter pruning. That means,
the student-net only corresponds to the un-pruned part of
the teacher-net, which is obtained the same as [21]. One

#labeled data 10 20 50 100 200 all-meta-data
SGD 37.91 46.0 66.0 78.3 86.7 -
[18] 44.1 53.9 70.4 80.0 86.6 -
FitNet 86.1 92.3 94.5 96.0 96.5 -
FSKD 94.4 96.5 97.0 97.5 97.8 -
SGD 57.1 68.3 81.3 85.8 89.7 -
[23] - - - - - 92.5
FitNet 90.3 94.2 96.1 96.7 97.3 -
FSKD 95.5 97.2 97.6 98.0 98.1 -

Table 7: Performance of FSKD on hand designed student-nets with
random initialization, compared with previous works [18, 23].

difference is that we did not copy the weight from un-pruned
part of teacher-net to the student-net, while keeping the
weight of student-net randomly initialized. For both cases,
we compared our FSKD with (1) standard SGD trained on
few samples with labeled loss; (2) method from [18] or [23]
under the same setting; (3) the FitNet method trained on few
samples. In order to better simulate the few-sample setting,
we do not apply data augmentation to the training set. We
randomly pick 10, 20, 50, 100 and 200 samples from the
MNIST training set and keep these few-sample sets fixed
across this study. Table 7 lists the comparison results. It
shows that SGD with few samples performs the worst, while
[18] performs better on the same settings than SGD (still
worse on the case of 200 samples). The data-free method
[23] performs better than SGD. On both cases, FitNet shows
much better performance than SGD and the two compared
methods, while our FSKD further outperform FitNet with a
noticeable gap, where the gap becomes smaller and smaller
when the number of samples increases. This may be due
to the following reason. FSKD can be viewed as a special
case of FitNet. FitNet optimizes all the weights between
teacher-net and student-net using standard SGD algorithm,
while FSKD optimizes only the weights from added 1×1
conv-layers in student-net with the BCD algorithm. The
BCD algorithm is more sample-efficient than the SGD based
algorithm so that FSKD performs both much more efficient
and accurate than FitNet on few-sample settings. When
training samples used are increased, FSKD will converge to
FitNet in the end.

6. Conclusion
We proposed a novel and simple method, namely few-

sample knowledge distillation (FSKD) for efficient net-
work compression, while “efficient” lies in both train-
ing/processing efficient and data-sample efficient. FSKD
works for student-nets constructed by either pruning or de-
composing teacher-nets with different methods, and demon-
strates great efficiency over fine-tuning based solution and
advantages over traditional knowledge distillation methods
by a large margin in the few-sample setting. This advantage
can bring many potential applications for FSKD.

8



References
[1] J. Ba and R. Caruana. Do deep nets really need to be deep?

In NIPS, 2014. 1
[2] E. Bart and S. Ullman. Cross-generalization: Learning novel

classes from a single example by feature replacement. In
CVPR. IEEE, 2005. 3

[3] C. Bucila, R. Caruana, A. Niculescu-Mizil, et al. Model
compression. In SIGKDD. ACM, 2006. 1

[4] T. Chen, I. Goodfellow, J. Shlens, et al. Net2net: Accelerating
learning via knowledge transfer. In ICLR, 2016. 2

[5] E. Denton, Zaremba, Y. Lecun, et al. Exploiting linear struc-
ture within convolutional networks for efficient evaluation. In
NIPS, 2014. 1, 2

[6] L. Fei-Fei, R. Fergus, P. Perona, et al. One-shot learning of
object categories. IEEE Trans PAMI, 2006. 3

[7] C. Finn, P. Abbeel, S. Levine, et al. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML, 2017.
3

[8] J. Guo, Y. Li, W. Lin, Y. Chen, and J. Li. Network decoupling:
From regular to depthwise separable convolutions. In BMVC,
2018. 4, 6, 7

[9] S. Han, H. Mao, B. Dally, et al. Deep compression: Compress-
ing deep neural networks with pruning, trained quantization
and huffman coding. In NIPS, 2016. 1, 4

[10] S. Han, J. Pool, J. Tran, W. Dally, et al. Learning both weights
and connections for efficient neural network. In NIPS, 2015.
2

[11] K. He, X. Zhang, J. Sun, et al. Deep residual learning for
image recognition. In CVPR, 2016. 1

[12] G. Hinton, L. Deng, D. Yu, et al. Deep neural networks for
acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal Processing Magazine,
29(6), 2012. 1

[13] G. Hinton, O. Vinyals, J. Dean, et al. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.
1, 2

[14] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.
Densely connected convolutional networks. In CVPR, 2017.
5

[15] Z. Huang and N. Wang. Like what you like: Knowl-
edge distill via neuron selectivity transfer. arXiv preprint
arXiv:1707.01219, 2017. 1, 2

[16] M. Jaderberg, A. Vedaldi, A. Zisserman, et al. Speeding up
convolutional neural networks with low rank expansions. In
BMVC, 2014. 1, 2

[17] Y. Kim, E. Park, S. Yoo, et al. Compression of deep con-
volutional neural networks for fast and low power mobile
applications. In ICLR, 2016. 1, 2

[18] A. Kimura, Z. Ghahramani, K. Takeuchi, et al. Few-shot
learning of neural networks from scratch by pseudo example
optimization. In BMVC, 2018. 3, 8

[19] A. Krizhevsky and G. Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, 2012. 1

[20] B. Lake, R. Salakhutdinov, J. Gross, et al. One shot learning
of simple visual concepts. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 33, 2011. 3

[21] H. Li, A. Kadav, D. I, et al. Pruning filters for efficient
convnets. ICLR, 2017. 1, 2, 4, 5, 7, 8

[22] Z. Liu, J. Li, Z. Shen, et al. Learning efficient convolutional
networks through network slimming. In ICCV, 2017. 1, 2, 4,
5, 6

[23] R. G. Lopes, S. Fenu, T. Starner, et al. Data-free knowl-
edge distillation for deep neural networks. arXiv preprint
arXiv:1710.07535, 2017. 3, 8

[24] J. Luo, J. Wu, W. Lin, et al. Thinet: A filter level pruning
method for deep neural network compression. In ICCV, 2017.
2

[25] T. Mikolov, M. Karafiát, L. Burget, et al. Recurrent neural
network based language model. In INTERSPECH, 2010. 1

[26] V. Nair and G. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In ICML, 2010. 4

[27] S. Ravi and H. Larochelle. Optimization as a model for few-
shot learning. In ICLR, 2017. 3

[28] A. Romero, N. Ballas, S. E. Kahou, et al. Fitnets: Hints for
thin deep nets. In ICLR, 2015. 1, 2, 3, 5

[29] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015. 4

[30] S. Srinivas and F. Fleuret. Knowledge transfer with jacobian
matching. arXiv preprint arXiv:1803.00443, 2018. 1, 2

[31] O. Vinyals, C. Blundell, T. Lillicrap, et al. Matching networks
for one shot learning. In NIPS, 2016. 3

[32] Y. Xu and W. Yin. A globally convergent algorithm for
nonconvex optimization based on block coordinate update.
Journal of Scientific Computing, 72(2):700–734, 2017. 3

[33] J. Yim, D. Joo, J. Bae, et al. A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning.
In CVPR, 2017. 2

[34] X. Zhang, J. Zou, J. Sun, et al. Accelerating very deep con-
volutional networks for classification and detection. IEEE
TPAMI, 38(10), 2016. 1, 2

[35] Y. Zhang, T. Xiang, T. Hospedales, et al. Deep mutual learn-
ing. In CVPR, 2018. 2

9


