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Abstract
In this work we study the quantitative relation between the recursive teaching dimension (RTD)
and the VC dimension (VCD) of concept classes of finite sizes. The RTD of a concept class C ⊆
{0, 1}n, introduced by Zilles et al. (2011), is a combinatorial complexity measure characterized by
the worst-case number of examples necessary to identify a concept in C according to the recursive
teaching model.

For any finite concept class C ⊆ {0, 1}n with VCD(C) = d, Simon and Zilles (2015) posed an
open problem RTD(C) = O(d), i.e., is RTD linearly upper bounded by VCD? Previously, the best
known result is an exponential upper bound RTD(C) = O(d ·2d), due to Chen et al. (2016). In this
paper, we show a quadratic upper bound: RTD(C) = O(d2), much closer to an answer to the open
problem. We also discuss the challenges in fully solving the problem.
Keywords: Recursive teaching dimension; VC dimension; Recursive teaching model

1. Introduction

Sample complexity is one of the most important concepts in machine learning. Basically, it is
the amount of data needed to achieve a desired learning accuracy. Sample complexity has been
extensively studied in various learning models. In PAC-learning, sample complexity is characterized
by the VC dimension (VCD) of the concept class (Blumer et al., 1989; Vapnik and Chervonenkis,
1971). PAC-learning is a passive learning model. In this model, the role of the teacher is limited to
providing labels to data randomly drawn from the underlying distribution.

Different from PAC-learning, there are important models in which a teacher is involved more
actively in the learning process. For example, in the classical teaching model (Goldman and Kearns,
1995; Shinohara and Miyano, 1991), the teacher chooses a set of labeled examples so that the
learner, after receiving the examples, can distinguish the target concept from all other concepts in
the concept class. In this model, the key complexity measure of a concept class is the teaching
dimension, which is defined as the worst-case number of examples needed to be selected by the
teacher (Goldman and Kearns, 1995). Teaching dimension finds applications in many learning
problems (Angluin, 2004; Hanneke, 2007; Dasgupta, 2005; Hegedűs, 1995; Goldman and Mathias,
1993; Anthony et al., 1995).
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Another model of teaching, the recursive teaching model, is proposed by Zilles et al. (2011). The
idea underlying the recursive teaching model is to let the teacher exploit a hierarchical structure in
the concept class. Concretely, the hierarchy of a concept class is a nesting, starting from the concept
that requires the smallest amount of data to teach, and then applying this process recursively to the
rest of the concepts. The complexity measure of a concept class in the recursive teaching model is
called recursive teaching dimension (RTD). RTD is defined as the worst-case number of examples
needed to be selected by the teacher for any target concept during the recursive process (Zilles et al.,
2011). See also Section 2 for a formal definition.

Although less intuitive, RTD exhibits surprising properties. The most interesting property is the
quantitative relation between RTD and VCD of a finite concept class. An example is intersection-
closed concept classes. For such a concept class C, RTD(C) ≤ VCD(C). On the other hand,
there exist cases where RTD(C) > VCD(C). However, the best known worst-case lower bound is
RTD(C) ≥ 5

3VCD(C), which is proven by giving an explicit construction (Chen et al., 2016). For
more special cases such that RTD(C) = VCD(C) or RTD(C) ≤ VCD(C), please refer to (Doliwa
et al., 2014).

Based on these insights, Simon and Zilles (2015) posed an open problem on the quantitative
relation between RTD and VCD of general concept classes: For any finite concept class C ⊆ {0, 1}n
with VCD(C) = d, is RTD(C) linearly upper bounded by d, i.e., does RTD(C) ≤ κd hold for a
universal constant κ?

At the time when this open problem was posed, the only known result for general concept classes
C ⊆ {0, 1}n is RTD(C) = O(d · 2d log log |C|) (Moran et al., 2015). This bound is exponential in
VCD and depends on the size of the concept class.

Before our work, the best known upper bound is due to Chen et al. (2016), who proved that
RTD(C) = O(d · 2d), which is the first upper bound for RTD(C) that depends only on VCD(C),
but not on the size of the concept class.

In this paper, we continue this line of research and extend the techniques developed in (Kuhlmann,
1999; Moran et al., 2015; Chen et al., 2016). Our main result is a quadratic upper bound RTD(C) =
O(d2) for any finite concept class C ⊆ {0, 1}n with VCD(C) = d. In particular, we prove
RTD(C) ≤ 39.3752d2 − 3.6330d. Comparing to previous results, our bound is much closer to
the linear upper bound in the open problem.

As pointed out by Simon and Zilles (2015), a solution to their open problem will have important
implications: It provides deeper understanding not only of the relationship between the complexity
of teaching and the complexity of passive supervised learning, but also on the well-known sample
compression conjecture (Warmuth, 2003; Littlestone and Warmuth, 1986), which states that for
every concept class of VCD d, there is a compression scheme that can compress the samples to a
subset of size at most d. (See also (David et al., 2016) for recent progress.)

The rest of the paper is organized as follows. Section 2 presents the background and all the
definitions. In Section 3 we propose our main results and proofs. Section 4 provides discussions on
the challenges in fully solving the open problem.

2. Preliminaries

Let X be a finite instance space and C a concept class over X , i.e., C ⊆ {0, 1}X . For notational
simplicity, we always assume X = [n] where [n] = {1, 2, . . . , n}, and consider concept class
C ⊆ {0, 1}n.
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The VC dimension of a concept class C ⊆ {0, 1}n, denoted by VCD(C), is the maximum size
of a shattered subset of [n], where A ⊆ [n] is said to be shattered by C if |{c|A : c ∈ C}| = 2|A|.
Here c|A is the projection of c on A. In other words, for every b ∈ {0, 1}|A|, there is c ∈ C so that
c|A = b.

For a given concept class C ⊆ {0, 1}n and a concept c ∈ C, we say A ⊆ [n] is a teaching set for
c if A distinguishes c from all other concepts in C. That is, c|A 6= c′|A for all c′ ∈ C, c′ 6= c.

The size of the smallest teaching set for c with respect to C is denoted by TD(c; C). In the
classical teaching model (Goldman and Kearns, 1995; Shinohara and Miyano, 1991), the teaching
dimension of a concept class C, denoted by TD(C), is defined as TD(C) = maxc∈C TD(c; C).
TD(C) can be seen as the worst-case teaching complexity (Kuhlmann, 1999), as it considers the
hardest concept to distinguish from other concepts. However, defining teaching complexity using
the hardest concept is often restrictive; and TD(C) does not always capture the idea of cooperation
in teaching and learning. In fact, a simple concept class may have the maximum possible complexity
(Zilles et al., 2011). Instead, one can consider the best-case teaching dimension of C.

Definition 1 (Best-Case Teaching Dimension) The best-case teaching dimension of a concept class
C, denoted by TDmin(C), is defined as

TDmin(C) = min
c∈C

TD(c; C).

In the recursive teaching model (Zilles et al., 2011), the teacher exploits a hierarchy of the
concept class C. It recursively removes from the given concept class all concepts whose teaching
dimension with respect to the remaining concepts is smallest. The recursive teaching dimension
RTD of C is defined as the largest value of the smallest teaching dimensions encountered in the
recursive process.

Definition 2 (Recursive Teaching Dimension (Zilles et al., 2011)) For a given concept class C,
define a sequence C0, C1, . . . , CT such that C0 = C, and Ct+1 = Ct\{c ∈ Ct : TD(c; Ct) =
TDmin(Ct)}. Here T is the smallest integer so that CT+1 = ∅. The recursive teaching dimension of
C, denoted by RTD(C), is defined as RTD(C) = max0≤t≤T TDmin(Ct).

Our goal is to bound RTD(C) in terms of VCD(C). It turns out that rather than studying VC
dimension and shattering directly, considering the number of projection patterns is more helpful
(Kuhlmann, 1999; Moran et al., 2015).

Definition 3 ((x, y)-class) We say a concept class C ⊆ {0, 1}n is an (x, y)-class for positive inte-
gers x, y, if for any A ⊆ [n] such that |A| ≤ x, |{c|A : c ∈ C}| ≤ y.

In the rest of this paper we will frequently use the following observations. A concept class C
with VCD(C) = d is a (d + 1, 2d+1 − 1)-class. More importantly, C is an

(
x, b( exd )

dc
)
-class for

every x > d, due to Sauer’s lemma stated below.

Theorem 4 (Sauer-Shelah Lemma (Sauer, 1972; Shelah, 1972)) Let C ⊆ {0, 1}n be a concept
class with VCD(C) = d. Then for any A ⊆ [n] such that |A| > d,

∣∣{c|A : c ∈ C}
∣∣ ≤ d∑

k=0

(
|A|
k

)
≤
(
e|A|
d

)d
.
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Our main result is based on an analysis of the largest possible best-case teaching dimension of
all finite (x, y)-classes.

Definition 5 Define f(x, y) = supC TDmin(C), where the supremum is taken over all finite (x, y)-
classes C.

Kuhlmann (1999) proved f(2, 3) = 1, and Moran et al. (2015) proved f(3, 6) ≤ 3.

3. Main Results

In this section, we state and prove our main result. We show that for any finite concept class C,
RTD(C) is quadratically upper bounded by VCD(C).

Theorem 6 For any concept class C ⊆ {0, 1}n with VCD(C) = d,

RTD(C) = O(d2).

We first give an informal description of the proof, in which we extend the techniques developed
in (Kuhlmann, 1999; Moran et al., 2015; Chen et al., 2016). The key idea of our approach is
to analyze f(x, y), the largest possible best-case teaching dimension for (x, y)-classes. The first
step is to show a recursive formula for f(x, y). The observation is that for a monotone increasing
function φ(x) that grows substantially slower than 2x, we have

f(x+ 1, φ(x+ 1)) ≤ f(x, φ(x)) +O(x).

The recursive formula immediately leads to a quadratic upper bound f(x, φ(x)) ≤ O(x2).
The second step is to select an appropriate function φ(·). We choose φ(x) = αx for certain

α ∈ (1, 2). Next, we relate the VC dimension to f(x, y). We show that for any finite concept class
C with VCD(C) = d, C must be an (x, αx)-class for some x not much larger than d. In fact, it
suffices when x is a constant times of d. Combining the above arguments, we have shown that the
best-case teaching dimension of C is upper bounded by O(d2). Finally, a standard argument yields
RTD(C) = O(d2).

Now we give the formal proof of Theorem 6. The next lemma gives the recursive formula of
f(x, y).

Lemma 7 For any positive integer x, y, z such that y ≤ 2x − 1 and z ≤ 2y + 1, the following
inequality holds:

f(x+ 1, z) ≤ f(x, y) +
⌈
(y + 1)(x− 1) + 1

2y − z + 2

⌉
.

Proof For convenience, let k =
⌈

(y+1)(x−1)+1
2y−z+2

⌉
. For any concept class C ⊆ {0, 1}n, we only need

to show that if C is an (x+ 1, z)-class, then

TDmin(C) ≤ f(x, y) + k.

If n < k, the theorem is trivial, because

TDmin(C) ≤ n < k ≤ f(x, y) + k.
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Assume n ≥ k in the rest of the proof. For any Y ⊆ [n], |Y | = k, and any b ∈ {0, 1}k, define

CY,b := {c ∈ C : c|Y = b}.

Following the approach of (Kuhlmann, 1999; Moran et al., 2015; Chen et al., 2016), we choose
Y ∗, b∗ among all possible Y, b such that CY ∗,b∗ is nonempty and has the smallest size. Without loss
of generality, we assume b∗ = 0.

If CY ∗,b∗ is an (x, y)-class, our proof is finished, because we can find a concept c ∈ CY ∗,b∗ so
that c has a teaching set T ⊆ [n]\Y ∗ of size no more than f(x, y) which distinguishes c from all
other concepts in CY ∗,b∗ . Then T ∪ Y ∗ is a teaching set that distinguishes c from all other concepts
in C. The fact that |T ∪ Y ∗| ≤ f(x, y) + k completes the proof.

Finally we show CY ∗,b∗ is an (x, y)-class. The proof idea is as follows.
Suppose CY ∗,b∗ is not an (x, y)-class. Then we can find Y ′ and b′ such that |Y ′| = |Y ∗| and

CY ′,b′ is a strict nonempty subset of CY ∗,b∗ . This contradicts the assumption that CY ∗,b∗ is the
smallest nonempty set over all choices of Y, b such that |Y | = k. We construct Y ′, b′ as this: if
CY ∗,b∗ is not an (x, y)-class , then we can find two sets Z and W such that

1. |Z| = |W |;

2. The intersection of Z and Y ∗ is the empty set;

3. W is a subset of Y ∗.

Let Y ′ = (Y ∗\W )∪Z, then |Y ′| = |Y ∗|. In addition, we can also find a string s, whose length
equals to |Z|, such that C(Y ∗\W )∪Z,0◦s is a strict (and nonempty) subset of CY ∗,b∗ , where 0 is the
zero string of length |Y ∗\W |. (Note that we assumed w.l.o.g. b∗ is the zero string.) Therefore,
choosing b′ = 0 ◦ s leads to the desired contradiction. The proof detail is as follows.

Assume for the sake of contradiction that CY ∗,b∗ is not an (x, y)-class. Then there exists Z ⊆ [n]
such that |Z| ≤ x and |{c|Z : c ∈ CY ∗,b∗}| ≥ y + 1. Note that Z\Y ∗ cannot be an empty set since
y + 1 > 1. Without loss of generality, we assume Z ∩ Y ∗ = ∅; otherwise simply consider Z\Y ∗
instead of Z.

Now define
CY
∗,b∗

Z := {c|Z : c ∈ CY ∗,b∗},
and for every w ∈ Y ∗ define

Cw,1Z := {c|Z : c ∈ C, c|{w} = 1}.

Recall that C is an (x + 1, z)-class, |Z| ≤ x, and we assumed b∗ = 0. Therefore, the projection of
C on the set Z ∪ {w} has no more than z patterns. Thus∣∣CY ∗,b∗Z

∣∣+ ∣∣Cw,1Z

∣∣ ≤ z.
Since |CY

∗,b∗

Z | ≥ y + 1, we have |Cw,1Z | ≤ z − y − 1. Now, pick a subset C̃Y
∗,b∗

Z ⊆ CY
∗,b∗

Z so that
|C̃Y

∗,b∗

Z | = y + 1. We have for every w ∈ Y ∗, |C̃Y
∗,b∗

Z \Cw,1Z | ≥ 2y − z + 2. Thus,∑
w∈Y ∗

|C̃Y
∗,b∗

Z \Cw,1Z | ≥ k(2y − z + 2)

> (y + 1)(x− 1)

= |C̃Y
∗,b∗

Z | · (x− 1)

≥ |C̃Y
∗,b∗

Z | · (|Z| − 1).
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It then follows from the Pigeonhole Principle that there exists W ⊆ Y ∗ such that |W | = |Z| and⋂
w∈W

(C̃Y
∗,b∗

Z \Cw,1Z ) 6= ∅. Pick any string s ∈
⋂

w∈W
(C̃Y

∗,b∗

Z \Cw,1Z ), and consider the set C(Y ∗\W )∪Z,0◦s

defined as
C(Y ∗\W )∪Z,0◦s := {c ∈ C : c|(Y ∗\W ) = 0, c|Z = s}.

It is clear that C(Y ∗\W )∪Z,0◦s is a nonempty and proper subset of CY ∗,b∗ . This leads to a contradic-
tion with the choice of Y ∗, b∗.

Using the recursive formula established in Lemma 7, we are able to give upper bound on the
best-case teaching complexity for all (x, y)-classes.

Lemma 8 For every α ∈ (1, 2), and every positive integer x,

f(x, bαxc) ≤ (x− 1)2

4− 2α
+

3− 2α

4− 2α
· (x− 1).

Proof Applying lemma 7 by setting y = bαxc and z =
⌊
αx+1

⌋
, we have

f(x+ 1,
⌊
αx+1

⌋
) ≤ f(x, bαxc) +

⌈
(bαxc+ 1)(x− 1) + 1

2 bαxc − bαx+1c+ 2

⌉
. (1)

Since ⌈
(bαxc+ 1)(x− 1) + 1

2 bαxc − bαx+1c+ 2

⌉
≤ x− 1

2− bα
x+1c

bαxc+1

+ 1 ≤ x− 1

2− α
+ 1 =

x+ 1− α
2− α

,

Inequality (1) can be simplified to

f(x+ 1,
⌊
αx+1

⌋
) ≤ f(x, bαxc) + x+ 1− α

2− α
.

Observe that f(1, 1) = 0 and apply the above inequality recursively, we obtain

f(x, bαxc) ≤ (x− 1)2

4− 2α
+

3− 2α

4− 2α
· (x− 1).

Next we show that for a concept class C with VCD(C) = d, C must be an (x, bαxc)-class for x
not much larger than d.

Lemma 9 Given α ∈ (1, 2), define

λ∗ := inf{λ ≥ 1 : λ lnα− lnλ− 1 ≥ 0}.

Then for any concept class C ⊆ {0, 1}n with VCD(C) = d, C is an (x, bαxc)-class for every integer
x ≥ λ∗d.
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Proof By Sauer’s lemma, we only need to verify(ex
d

)d
≤ αx,

holds for all x ≥ λ∗d. This follows from elementary calculus. We omit the details.

Now we give the main conclusion.

Theorem 10 For any concept class C ⊆ {0, 1}n with VCD(C) = d,

RTD(C) ≤ 39.3752d2 − 3.6330d.

Proof By Lemma 8 and Lemma 9, we have for any α ∈ (1, 2) and any x ≥ λ∗d, where λ∗ is
defined in Lemma 9, the following holds

TDmin(C) ≤
(x− 1)2

4− 2α
+

3− 2α

4− 2α
· (x− 1).

Observe that the VC dimension of a concept class does not increase after a concept is removed, we
have

RTD(C) ≤ (x− 1)2

4− 2α
+

3− 2α

4− 2α
· (x− 1). (2)

To optimize the coefficients in the quadratic bound, we choose λ∗ = 4.71607, α = (eλ∗)1/λ
∗ ≈

1.71757, x = dλ∗de. Finally, observe that the RHS of (2) is an increasing function of x on the
interval [λ∗,+∞) given our choice of the parameters, we conclude that

RTD(C) ≤ (λ∗d)2

4− 2α
+

3− 2α

4− 2α
· λ∗d ≤ 39.3752d2 − 3.6330d.

4. Discussion and Conclusion

In the previous section we show that for finite concept class C, RTD(C) = O(VCD(C)2). In this
section, we discuss our thoughts on the challenges in fully solving the open problem RTD(C) =
O(VCD(C)).

The key technical result in our proof is the quadratic upper bound in Lemma 8 which, loosely
speaking, is that for φ(x) < 2x

f(x, φ(x)) = O(x2), (3)

which is based on the recursive formula

f(x+ 1, φ(x+ 1)) ≤ f(x, φ(x)) +O(x), (4)

In order to prove RTD(C) = O(VCD(C)) (if it is true), one needs to strengthen (3) to

f(x, φ(x)) = O(x).
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If we still follow the recursive approach, we have to improve the recursive formula (4) to

f(x+ 1, φ(x+ 1)) ≤ f(x, φ(x)) +O(1). (5)

In our view, (5) is qualitatively different from (4); and this is the bottleneck of the current approach.
Another way to state the quadratic upper bound for f(x, y) in Lemma 8 is f(x, y) = O(log2 y)

for y < 2x. (To see this, observe f is non-increasing in x and non-decreasing in y.) The conjecture
RTD(C) = O(VCD(C)) is exactly equivalent to f(x, y) = O(log y) for all y < 2x. However, the
only result we can show is that f(x, y) = O(log y) for y not much larger than x.1

We also consider the relation between RTD and VCD via the probabilistic method. If we fix n
and the size of the concept class as N (n,N sufficiently large), and draw N concepts from {0, 1}n
uniformly at random to form C, it can be shown that with overwhelming probability RTD(C) is
smaller than VCD(C). Indeed, with probability at least 1−

(
1
2

)Ω( n
logN

), VCD(C) > log2(
N

lnN ) and
RTD(C) < log2(

N
lnN ) hold true simultaneously for sufficiently large n,N . Although this does not

prove any bound, it tells us that the cases RTD(C)� VCD(C) are rare.
So far we focus on the upper bounds for RTD in terms of VCD, and discuss the challenges in

proving RTD(C) = O(VCD(C)). What if RTD is not linearly upper bounded by VCD? How to
prove it? There are attempts along this line. Kuhlmann (1999) first showed there exist finite concept
classes C with RTD(C) = 3

2VCD(C). Warmuth discovered the smallest such class (Doliwa et al.,
2014). Chen et al. (2016), based on their insights and with the aid of SAT solvers, found finite
concept classes C with RTD(C) = 5

3VCD(C). However, to prove RTD is not linearly bounded by
VCD, we need a sequence C1, C2, . . . (Ci ⊆ {0, 1}ni) such that RTD(Ci)

VCD(Ci) grows beyond any constant.

In order that RTD(Ci)
VCD(Ci) grows unboundedly, ni and |Ci| have to grow unboundedly as well. This

means that as the instance space is getting larger, there exist concept classes for which the ratio of
RTD and VCD grows. However, currently there is no clue that larger ni and |Ci| would result in
larger ratio between RTD and VCD in a structural way. The only known structural result is that for
Cartesian product of two concept classes, the ratio does NOT grow. More concretely (Doliwa et al.,
2014),

RTD(C1 × C2) ≤ RTD(C1) + RTD(C2),

and
VCD(C1 × C2) = VCD(C1) + VCD(C2).

We believe any improvement along this line requires constructions more delicate in structure.
Our understanding of the quantitative relation between RTD and VCD is still preliminary. Even

for the simple special case VCD = 2, we do not have a complete characterization: The best known
upper bound for C ⊆ {0, 1}n with VCD(C) = 2 is RTD(C) ≤ 6 (Chen et al., 2016); and the worst-
case lower bound is RTD(C) ≥ 3 (Kuhlmann, 1999; Doliwa et al., 2014). The current knowledge
of the four cases of VCD(C) = 2 (i.e., (3, 7), (3, 6), (3, 5), (3, 4)-classes) is not complete either:
For (3, 7)-classes, Chen et al. (2016) proved

3 ≤ max
C∈(3,7)

RTD(C) ≤ 6;

For (3, 6)-classes, Moran et al. (2015) proved

2 ≤ max
C∈(3,6)

RTD(C) ≤ 3;

1. By induction on c, it’s easy to show that ∀x, y, c ∈ N∗, f(x+ c, y + c) ≤ max{f(x, y), blog2(y + c)c}.
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Using a similar argument as in the proof of Lemma 7 and optimizing the parameters with respect to
the specific case of (3, 5)-classes (choosing x = 2, y = 3, z = 5, k = 1), we can show

max
C∈(3,5)

RTD(C) = 2;

And hence for (3, 4)-classes maxC∈(3,4) RTD(C) = 2.
The relationship between RTD and VCD is intriguing. Analyzing special cases and sub-classes

with specific structure may provide insights for finally solving the open problem.
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